Fast-settling Two-stage Automatic Gain Control for Multi-service Fibre-wireless Fronthaul Systems

With the development of fast digitiser and digital signal processing techniques, wide-band digital radio-over-fiber (DRoF) based wireless fronthaul systems have been extensively studied as a way of offering multi-service wireless coverage. With data compression, the high digital data rate caused by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020-01, Vol.8, p.1-1
Hauptverfasser: Li, Wen, Chen, Aixin, Wang, Xuefeng, Li, Tongyun, Penty, Richard, Liu, Xiaobin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the development of fast digitiser and digital signal processing techniques, wide-band digital radio-over-fiber (DRoF) based wireless fronthaul systems have been extensively studied as a way of offering multi-service wireless coverage. With data compression, the high digital data rate caused by digitisation can be reduced so as to minimise the infrastructure cost for last-mile cellular coverage. However, data compression always comes with the cost of a lower input power dynamic range. To overcome the issue, this paper proposes a novel fast-settling two-stage automatic gain control (FSS-AGC) algorithm, in which gain adjustment is carried out by a multi-threshold decision mechanism with a fast-settling time (within 2μs), high stability and great accuracy. By introducing a novel gain control mechanism which simultaneously adjusts the gain in the digital and RF domains, the loss of dynamic range after compression is compensated. This algorithm is applied and demonstrated in a DRoF based digital distributed antenna system (DDAS) which supports all current cellular services from 3 Chinese mobile network operators (MNOs). The demonstration shows over 73dB dynamic range, with 40dB improvement compared with conventional links. Its promising properties and excellent performance enable its potential application in next-generation converged networks for Internet of things (IoT) and 5G services.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.3014974