Data Repair Without Prior Knowledge Using Deep Convolutional Neural Networks

In recent years, the use of wireless sensor networks has become increasingly widespread. Because of the instability of wireless networks, packet loss occasionally occurs. To reduce the impact of packet loss on data integrity, we take advantage of the deep neural network's excellent ability to u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.105351-105361
Hauptverfasser: Qie, Youtian, Song, Ping, Hao, Chuangbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, the use of wireless sensor networks has become increasingly widespread. Because of the instability of wireless networks, packet loss occasionally occurs. To reduce the impact of packet loss on data integrity, we take advantage of the deep neural network's excellent ability to understand natural data and propose a data repair method based on a deep convolutional neural network with an encoder-decoder architecture. Compared with common interpolation algorithms and compressed sensing algorithms, this method obtains better repair results, is suitable for a wider range of applications, and does not need prior knowledge. This method adopts measures such as preparing training set data as well as the design and optimization of loss functions to achieve faster convergence speed, higher repair accuracy, and better stability. To fairly compare the repair performance of different signals, the mean squared error, relative peak-to-peak average error, and relative peak-to-peak max error are adopted to quantitatively evaluate the repair results of different signals. Comparative experiments prove that this method has better data recovery performance than traditional interpolation and compressed sensing algorithms.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2999960