Orthogonal Polynomials With a Semi-Classical Weight and Their Recurrence Coefficients

Focusing on the weight function \omega (x,t)=x^{\alpha }e^{-\frac {1}{3}x^{3}+tx}, x\in [0,\infty),\,\,\,\,\alpha >-1,\,\,\,\,t> 0 , we state its asymptotic orthogonal polynomials. Through Toda evolution, differential equations of \alpha _{n}(t) and \beta _{n}(t) have been worked. Consequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.83916-83925
Hauptverfasser: Wang, Dan, Zhu, Mengkun, Chen, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Focusing on the weight function \omega (x,t)=x^{\alpha }e^{-\frac {1}{3}x^{3}+tx}, x\in [0,\infty),\,\,\,\,\alpha >-1,\,\,\,\,t> 0 , we state its asymptotic orthogonal polynomials. Through Toda evolution, differential equations of \alpha _{n}(t) and \beta _{n}(t) have been worked. Consequently, we also talk about the approximate value of \alpha _{n}(t) . Basing on the asymptotic value of \alpha _{n}(t) , the asymptotic of second order differential equation of P_{n}(z) and expansion of the logarithmic form of Hankel determinant are confirmed.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2992185