Orthogonal Polynomials With a Semi-Classical Weight and Their Recurrence Coefficients
Focusing on the weight function \omega (x,t)=x^{\alpha }e^{-\frac {1}{3}x^{3}+tx}, x\in [0,\infty),\,\,\,\,\alpha >-1,\,\,\,\,t> 0 , we state its asymptotic orthogonal polynomials. Through Toda evolution, differential equations of \alpha _{n}(t) and \beta _{n}(t) have been worked. Consequ...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.83916-83925 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Focusing on the weight function \omega (x,t)=x^{\alpha }e^{-\frac {1}{3}x^{3}+tx}, x\in [0,\infty),\,\,\,\,\alpha >-1,\,\,\,\,t> 0 , we state its asymptotic orthogonal polynomials. Through Toda evolution, differential equations of \alpha _{n}(t) and \beta _{n}(t) have been worked. Consequently, we also talk about the approximate value of \alpha _{n}(t) . Basing on the asymptotic value of \alpha _{n}(t) , the asymptotic of second order differential equation of P_{n}(z) and expansion of the logarithmic form of Hankel determinant are confirmed. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2992185 |