Fast Texture Synthesis for Discrete Example-Based Elements

Considering the problem of discrete texture synthesis and the time for texturing, this paper proposes a novel framework for synthesizing texture images based on discrete example-based elements. We start with extracting texture feature distribution from exemplars and then produce discrete elements ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.76683-76691
Hauptverfasser: Huang, Zhengrui, Lin, Xiaohong, Chen, Chongcheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Considering the problem of discrete texture synthesis and the time for texturing, this paper proposes a novel framework for synthesizing texture images based on discrete example-based elements. We start with extracting texture feature distribution from exemplars and then produce discrete elements based on the cluster algorithm. After initializing a texture image, we propose a texture optimization algorithm based on heuristic searching to improve the quality of the texture image. Final, we use a texture transfer method based on Convolutional Neural Network (CNN) to stylize the optimized texture image. Our results show that the proposed texture synthesis method can significantly improve the quality of discrete texture synthesis and effectively shorten the time for texture generation.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2989898