HDIHT: A High-Accuracy Distributed Iterative Hard Thresholding Algorithm for Compressed Sensing

Iterative hard thresholding (IHT) is a beneficial tool for the recovery of sparse vectors in compressed sensing. In this study, we propose a high-accuracy distributed iterative hard thresholding algorithm (HDIHT) with explicit consideration given to the case in which noise is generated. The results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.49180-49186
Hauptverfasser: Chen, Xiaming, Qi, Zhuang, Xu, Jianlong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iterative hard thresholding (IHT) is a beneficial tool for the recovery of sparse vectors in compressed sensing. In this study, we propose a high-accuracy distributed iterative hard thresholding algorithm (HDIHT) with explicit consideration given to the case in which noise is generated. The results of our theoretical analysis show that it is possible to cancel the noise in the HDIHT compared to the IHT. The performance of the HDIHT in the case including noise was equivalent to the classic IHT in the noise-free case. A numerical experiment is also included, and the results are in accordance with the theoretical analysis.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2979516