Network Intrusion Detection Combined Hybrid Sampling With Deep Hierarchical Network

Intrusion detection system (IDS) plays an important role in network security by discovering and preventing malicious activities. Due to the complex and time-varying network environment, the network intrusion samples are submerged into a large number of normal samples, which leads to insufficient sam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2020, Vol.8, p.32464-32476
Hauptverfasser: Jiang, Kaiyuan, Wang, Wenya, Wang, Aili, Wu, Haibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intrusion detection system (IDS) plays an important role in network security by discovering and preventing malicious activities. Due to the complex and time-varying network environment, the network intrusion samples are submerged into a large number of normal samples, which leads to insufficient samples for model training and detection results with a high false detection rate. According to the problem of data imbalance, we propose a network intrusion detection algorithm combined hybrid sampling with deep hierarchical network. Firstly, we use the one-side selection (OSS) to reduce the noise samples in majority category, and then increase the minority samples by Synthetic Minority Over-sampling Technique (SMOTE). In this way, a balanced dataset can be established to make the model fully learn the features of minority samples and greatly reduce the model training time. Secondly, we use convolution neural network (CNN) to extract spatial features and Bi-directional long short-term memory (BiLSTM) to extract temporal features, which forms a deep hierarchical network model. The proposed network intrusion detection algorithm was verified by experiments on the NSL-KDD and UNSW-NB15 dataset, and the classification accuracy can achieve 83.58% and 77.16%, respectively.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2020.2973730