A Sample-Rebalanced Outlier-Rejected k -Nearest Neighbor Regression Model for Short-Term Traffic Flow Forecasting
Short-term traffic flow forecasting is a fundamental and challenging task due to the stochastic dynamics of the traffic flow, which is often imbalanced and noisy. This paper presents a sample-rebalanced and outlier-rejected k-nearest neighbor regression model for short-term traffic flow forecasting....
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.22686-22696 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Short-term traffic flow forecasting is a fundamental and challenging task due to the stochastic dynamics of the traffic flow, which is often imbalanced and noisy. This paper presents a sample-rebalanced and outlier-rejected k-nearest neighbor regression model for short-term traffic flow forecasting. In this model, we adopt a new metric for the evolutionary traffic flow patterns, and reconstruct balanced training sets by relative transformation to tackle the imbalance issue. Then, we design a hybrid model that considers both local and global information to address the limited size of the training samples. We employ four real-world benchmark datasets often used in such tasks to evaluate our model. Experimental results show that our model outperforms state-of-the-art parametric and non-parametric models. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2020.2970250 |