Improving the Performance of Sentiment Analysis of Tweets Containing Fuzzy Sentiment Using the Feature Ensemble Model
The increase in the volume of user-generated content on Twitter has resulted in tweet sentiment analysis becoming an essential tool for the extraction of information about Twitter users' emotional state. Consequently, there has been a rapid growth of tweet sentiment analysis in the area of natu...
Gespeichert in:
Veröffentlicht in: | IEEE access 2020, Vol.8, p.14630-14641 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The increase in the volume of user-generated content on Twitter has resulted in tweet sentiment analysis becoming an essential tool for the extraction of information about Twitter users' emotional state. Consequently, there has been a rapid growth of tweet sentiment analysis in the area of natural language processing. Tweet sentiment analysis is increasingly applied in many areas, such as decision support systems and recommendation systems. Therefore, improving the accuracy of tweet sentiment analysis has become practical and an area of interest for many researchers. Many approaches have tried to improve the performance of tweet sentiment analysis methods by using the feature ensemble method. However, most of the previous methods attempted to model the syntactic information of words without considering the sentiment context of these words. Besides, the positioning of words and the impact of phrases containing fuzzy sentiment have not been mentioned in many studies. This study proposed a new approach based on a feature ensemble model related to tweets containing fuzzy sentiment by taking into account elements such as lexical, word-type, semantic, position, and sentiment polarity of words. The proposed method has been experimented on with real data, and the result proves effective in improving the performance of tweet sentiment analysis in terms of the F_{1} score. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2963702 |