Lightweight Privacy-Preserving Equality Query in Edge Computing

As edge computing attains tremendous popularity, IoT devices always outsource their data to nearby edge servers for storing and pre-processing, which improves the efficiency of data processing and reduces the required network resources. For privacy-preserving, sensitive data is mostly encrypted befo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.182588-182599
Hauptverfasser: Wu, Qiyu, Zhou, Fucai, Xu, Jian, Feng, Da, Li, Bao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182599
container_issue
container_start_page 182588
container_title IEEE access
container_volume 7
creator Wu, Qiyu
Zhou, Fucai
Xu, Jian
Feng, Da
Li, Bao
description As edge computing attains tremendous popularity, IoT devices always outsource their data to nearby edge servers for storing and pre-processing, which improves the efficiency of data processing and reduces the required network resources. For privacy-preserving, sensitive data is mostly encrypted before outsourcing. Nevertheless, large volumes of data in edge computing usually comes from multiple data sources, which means that they are encrypted with different secret keys, making it difficult for edge server to query and process. Existing solutions are mostly proposed for this problem in cloud computing, but they do not take into account that the limitations of computing and storage capabilities of edge devices will prevent them from performing computationally expensive operations. In this paper, we propose a lightweight privacy-preserving equality query scheme (LPEQ) in edge computing for the first time, which allows authorized users to perform equality query efficiently and privately on the encrypted data outsourced by multiple IoT devices. We also introduce a formal security model and prove that the LPEQ meets secure requirements against curious entities under this model. Meanwhile, our theoretical analyses and experimental evaluations demonstrate that the LPEQ performs better efficiency in terms of computation and communication while retaining privacy-preserving properties. Therefore, it is practical for applications in edge computing.
doi_str_mv 10.1109/ACCESS.2019.2960047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2960047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8933443</ieee_id><doaj_id>oai_doaj_org_article_d0d7fd360b18444090b3c5728bea4730</doaj_id><sourcerecordid>2455620079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8a11aa91500384ea82550c0e139cac9aa31abb07334a1014a76ea47bc74dcd1e3</originalsourceid><addsrcrecordid>eNpNUMFqwzAMDWODla5f0Etg53Ry7MTxaZSQbYXCOrqdjeK4mUvbtE7Skb-fs5QyHSQh3nuSnudNCcwIAfE0T9NsvZ6FQMQsFDEA4zfeKCSxCGhE49t__b03qestuEjcKOIj73lpyu_mR_fZX1lzRtUFK6trbc_mUPrZqcWdaTr_o9W2883Bz4pS-2m1P7aNAzx4dxvc1XpyqWPv6yX7TN-C5fvrIp0vA8UgaYIECUEUJAKgCdOYhFEECjShQqESiJRgngOnlCEBwpDHGhnPFWeFKoimY28x6BYVbuXRmj3aTlZo5N-gsqVE2xi107KAgm8KGkNOEsYYCMipiniY5L0kBaf1OGgdbXVqdd3IbdXagztfhiyK4hCAC4eiA0rZqq6t3ly3EpC98XIwXvbGy4vxjjUdWEZrfWUkwj3GKP0FRpp9Uw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455620079</pqid></control><display><type>article</type><title>Lightweight Privacy-Preserving Equality Query in Edge Computing</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Qiyu ; Zhou, Fucai ; Xu, Jian ; Feng, Da ; Li, Bao</creator><creatorcontrib>Wu, Qiyu ; Zhou, Fucai ; Xu, Jian ; Feng, Da ; Li, Bao</creatorcontrib><description>As edge computing attains tremendous popularity, IoT devices always outsource their data to nearby edge servers for storing and pre-processing, which improves the efficiency of data processing and reduces the required network resources. For privacy-preserving, sensitive data is mostly encrypted before outsourcing. Nevertheless, large volumes of data in edge computing usually comes from multiple data sources, which means that they are encrypted with different secret keys, making it difficult for edge server to query and process. Existing solutions are mostly proposed for this problem in cloud computing, but they do not take into account that the limitations of computing and storage capabilities of edge devices will prevent them from performing computationally expensive operations. In this paper, we propose a lightweight privacy-preserving equality query scheme (LPEQ) in edge computing for the first time, which allows authorized users to perform equality query efficiently and privately on the encrypted data outsourced by multiple IoT devices. We also introduce a formal security model and prove that the LPEQ meets secure requirements against curious entities under this model. Meanwhile, our theoretical analyses and experimental evaluations demonstrate that the LPEQ performs better efficiency in terms of computation and communication while retaining privacy-preserving properties. Therefore, it is practical for applications in edge computing.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2960047</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cloud computing ; Data processing ; Edge computing ; Electronic devices ; Elliptic curve cryptography ; Elliptic curves ; Encryption ; Equality ; equality query ; Lightweight ; lightweight cryptography ; Privacy ; privacy-preserving ; Queries ; Servers ; Storage</subject><ispartof>IEEE access, 2019, Vol.7, p.182588-182599</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8a11aa91500384ea82550c0e139cac9aa31abb07334a1014a76ea47bc74dcd1e3</citedby><cites>FETCH-LOGICAL-c408t-8a11aa91500384ea82550c0e139cac9aa31abb07334a1014a76ea47bc74dcd1e3</cites><orcidid>0000-0001-6054-3523 ; 0000-0001-5590-8540 ; 0000-0002-6013-8533 ; 0000-0001-9874-8022 ; 0000-0002-8944-7970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8933443$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Wu, Qiyu</creatorcontrib><creatorcontrib>Zhou, Fucai</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Feng, Da</creatorcontrib><creatorcontrib>Li, Bao</creatorcontrib><title>Lightweight Privacy-Preserving Equality Query in Edge Computing</title><title>IEEE access</title><addtitle>Access</addtitle><description>As edge computing attains tremendous popularity, IoT devices always outsource their data to nearby edge servers for storing and pre-processing, which improves the efficiency of data processing and reduces the required network resources. For privacy-preserving, sensitive data is mostly encrypted before outsourcing. Nevertheless, large volumes of data in edge computing usually comes from multiple data sources, which means that they are encrypted with different secret keys, making it difficult for edge server to query and process. Existing solutions are mostly proposed for this problem in cloud computing, but they do not take into account that the limitations of computing and storage capabilities of edge devices will prevent them from performing computationally expensive operations. In this paper, we propose a lightweight privacy-preserving equality query scheme (LPEQ) in edge computing for the first time, which allows authorized users to perform equality query efficiently and privately on the encrypted data outsourced by multiple IoT devices. We also introduce a formal security model and prove that the LPEQ meets secure requirements against curious entities under this model. Meanwhile, our theoretical analyses and experimental evaluations demonstrate that the LPEQ performs better efficiency in terms of computation and communication while retaining privacy-preserving properties. Therefore, it is practical for applications in edge computing.</description><subject>Cloud computing</subject><subject>Data processing</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Elliptic curve cryptography</subject><subject>Elliptic curves</subject><subject>Encryption</subject><subject>Equality</subject><subject>equality query</subject><subject>Lightweight</subject><subject>lightweight cryptography</subject><subject>Privacy</subject><subject>privacy-preserving</subject><subject>Queries</subject><subject>Servers</subject><subject>Storage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFqwzAMDWODla5f0Etg53Ry7MTxaZSQbYXCOrqdjeK4mUvbtE7Skb-fs5QyHSQh3nuSnudNCcwIAfE0T9NsvZ6FQMQsFDEA4zfeKCSxCGhE49t__b03qestuEjcKOIj73lpyu_mR_fZX1lzRtUFK6trbc_mUPrZqcWdaTr_o9W2883Bz4pS-2m1P7aNAzx4dxvc1XpyqWPv6yX7TN-C5fvrIp0vA8UgaYIECUEUJAKgCdOYhFEECjShQqESiJRgngOnlCEBwpDHGhnPFWeFKoimY28x6BYVbuXRmj3aTlZo5N-gsqVE2xi107KAgm8KGkNOEsYYCMipiniY5L0kBaf1OGgdbXVqdd3IbdXagztfhiyK4hCAC4eiA0rZqq6t3ly3EpC98XIwXvbGy4vxjjUdWEZrfWUkwj3GKP0FRpp9Uw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wu, Qiyu</creator><creator>Zhou, Fucai</creator><creator>Xu, Jian</creator><creator>Feng, Da</creator><creator>Li, Bao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6054-3523</orcidid><orcidid>https://orcid.org/0000-0001-5590-8540</orcidid><orcidid>https://orcid.org/0000-0002-6013-8533</orcidid><orcidid>https://orcid.org/0000-0001-9874-8022</orcidid><orcidid>https://orcid.org/0000-0002-8944-7970</orcidid></search><sort><creationdate>2019</creationdate><title>Lightweight Privacy-Preserving Equality Query in Edge Computing</title><author>Wu, Qiyu ; Zhou, Fucai ; Xu, Jian ; Feng, Da ; Li, Bao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8a11aa91500384ea82550c0e139cac9aa31abb07334a1014a76ea47bc74dcd1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cloud computing</topic><topic>Data processing</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Elliptic curve cryptography</topic><topic>Elliptic curves</topic><topic>Encryption</topic><topic>Equality</topic><topic>equality query</topic><topic>Lightweight</topic><topic>lightweight cryptography</topic><topic>Privacy</topic><topic>privacy-preserving</topic><topic>Queries</topic><topic>Servers</topic><topic>Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qiyu</creatorcontrib><creatorcontrib>Zhou, Fucai</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Feng, Da</creatorcontrib><creatorcontrib>Li, Bao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Qiyu</au><au>Zhou, Fucai</au><au>Xu, Jian</au><au>Feng, Da</au><au>Li, Bao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Privacy-Preserving Equality Query in Edge Computing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>182588</spage><epage>182599</epage><pages>182588-182599</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As edge computing attains tremendous popularity, IoT devices always outsource their data to nearby edge servers for storing and pre-processing, which improves the efficiency of data processing and reduces the required network resources. For privacy-preserving, sensitive data is mostly encrypted before outsourcing. Nevertheless, large volumes of data in edge computing usually comes from multiple data sources, which means that they are encrypted with different secret keys, making it difficult for edge server to query and process. Existing solutions are mostly proposed for this problem in cloud computing, but they do not take into account that the limitations of computing and storage capabilities of edge devices will prevent them from performing computationally expensive operations. In this paper, we propose a lightweight privacy-preserving equality query scheme (LPEQ) in edge computing for the first time, which allows authorized users to perform equality query efficiently and privately on the encrypted data outsourced by multiple IoT devices. We also introduce a formal security model and prove that the LPEQ meets secure requirements against curious entities under this model. Meanwhile, our theoretical analyses and experimental evaluations demonstrate that the LPEQ performs better efficiency in terms of computation and communication while retaining privacy-preserving properties. Therefore, it is practical for applications in edge computing.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2960047</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6054-3523</orcidid><orcidid>https://orcid.org/0000-0001-5590-8540</orcidid><orcidid>https://orcid.org/0000-0002-6013-8533</orcidid><orcidid>https://orcid.org/0000-0001-9874-8022</orcidid><orcidid>https://orcid.org/0000-0002-8944-7970</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.182588-182599
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2960047
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Cloud computing
Data processing
Edge computing
Electronic devices
Elliptic curve cryptography
Elliptic curves
Encryption
Equality
equality query
Lightweight
lightweight cryptography
Privacy
privacy-preserving
Queries
Servers
Storage
title Lightweight Privacy-Preserving Equality Query in Edge Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Privacy-Preserving%20Equality%20Query%20in%20Edge%20Computing&rft.jtitle=IEEE%20access&rft.au=Wu,%20Qiyu&rft.date=2019&rft.volume=7&rft.spage=182588&rft.epage=182599&rft.pages=182588-182599&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2960047&rft_dat=%3Cproquest_cross%3E2455620079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455620079&rft_id=info:pmid/&rft_ieee_id=8933443&rft_doaj_id=oai_doaj_org_article_d0d7fd360b18444090b3c5728bea4730&rfr_iscdi=true