Lightweight Privacy-Preserving Equality Query in Edge Computing
As edge computing attains tremendous popularity, IoT devices always outsource their data to nearby edge servers for storing and pre-processing, which improves the efficiency of data processing and reduces the required network resources. For privacy-preserving, sensitive data is mostly encrypted befo...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.182588-182599 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182599 |
---|---|
container_issue | |
container_start_page | 182588 |
container_title | IEEE access |
container_volume | 7 |
creator | Wu, Qiyu Zhou, Fucai Xu, Jian Feng, Da Li, Bao |
description | As edge computing attains tremendous popularity, IoT devices always outsource their data to nearby edge servers for storing and pre-processing, which improves the efficiency of data processing and reduces the required network resources. For privacy-preserving, sensitive data is mostly encrypted before outsourcing. Nevertheless, large volumes of data in edge computing usually comes from multiple data sources, which means that they are encrypted with different secret keys, making it difficult for edge server to query and process. Existing solutions are mostly proposed for this problem in cloud computing, but they do not take into account that the limitations of computing and storage capabilities of edge devices will prevent them from performing computationally expensive operations. In this paper, we propose a lightweight privacy-preserving equality query scheme (LPEQ) in edge computing for the first time, which allows authorized users to perform equality query efficiently and privately on the encrypted data outsourced by multiple IoT devices. We also introduce a formal security model and prove that the LPEQ meets secure requirements against curious entities under this model. Meanwhile, our theoretical analyses and experimental evaluations demonstrate that the LPEQ performs better efficiency in terms of computation and communication while retaining privacy-preserving properties. Therefore, it is practical for applications in edge computing. |
doi_str_mv | 10.1109/ACCESS.2019.2960047 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2960047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8933443</ieee_id><doaj_id>oai_doaj_org_article_d0d7fd360b18444090b3c5728bea4730</doaj_id><sourcerecordid>2455620079</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8a11aa91500384ea82550c0e139cac9aa31abb07334a1014a76ea47bc74dcd1e3</originalsourceid><addsrcrecordid>eNpNUMFqwzAMDWODla5f0Etg53Ry7MTxaZSQbYXCOrqdjeK4mUvbtE7Skb-fs5QyHSQh3nuSnudNCcwIAfE0T9NsvZ6FQMQsFDEA4zfeKCSxCGhE49t__b03qestuEjcKOIj73lpyu_mR_fZX1lzRtUFK6trbc_mUPrZqcWdaTr_o9W2883Bz4pS-2m1P7aNAzx4dxvc1XpyqWPv6yX7TN-C5fvrIp0vA8UgaYIECUEUJAKgCdOYhFEECjShQqESiJRgngOnlCEBwpDHGhnPFWeFKoimY28x6BYVbuXRmj3aTlZo5N-gsqVE2xi107KAgm8KGkNOEsYYCMipiniY5L0kBaf1OGgdbXVqdd3IbdXagztfhiyK4hCAC4eiA0rZqq6t3ly3EpC98XIwXvbGy4vxjjUdWEZrfWUkwj3GKP0FRpp9Uw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455620079</pqid></control><display><type>article</type><title>Lightweight Privacy-Preserving Equality Query in Edge Computing</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wu, Qiyu ; Zhou, Fucai ; Xu, Jian ; Feng, Da ; Li, Bao</creator><creatorcontrib>Wu, Qiyu ; Zhou, Fucai ; Xu, Jian ; Feng, Da ; Li, Bao</creatorcontrib><description>As edge computing attains tremendous popularity, IoT devices always outsource their data to nearby edge servers for storing and pre-processing, which improves the efficiency of data processing and reduces the required network resources. For privacy-preserving, sensitive data is mostly encrypted before outsourcing. Nevertheless, large volumes of data in edge computing usually comes from multiple data sources, which means that they are encrypted with different secret keys, making it difficult for edge server to query and process. Existing solutions are mostly proposed for this problem in cloud computing, but they do not take into account that the limitations of computing and storage capabilities of edge devices will prevent them from performing computationally expensive operations. In this paper, we propose a lightweight privacy-preserving equality query scheme (LPEQ) in edge computing for the first time, which allows authorized users to perform equality query efficiently and privately on the encrypted data outsourced by multiple IoT devices. We also introduce a formal security model and prove that the LPEQ meets secure requirements against curious entities under this model. Meanwhile, our theoretical analyses and experimental evaluations demonstrate that the LPEQ performs better efficiency in terms of computation and communication while retaining privacy-preserving properties. Therefore, it is practical for applications in edge computing.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2960047</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Cloud computing ; Data processing ; Edge computing ; Electronic devices ; Elliptic curve cryptography ; Elliptic curves ; Encryption ; Equality ; equality query ; Lightweight ; lightweight cryptography ; Privacy ; privacy-preserving ; Queries ; Servers ; Storage</subject><ispartof>IEEE access, 2019, Vol.7, p.182588-182599</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8a11aa91500384ea82550c0e139cac9aa31abb07334a1014a76ea47bc74dcd1e3</citedby><cites>FETCH-LOGICAL-c408t-8a11aa91500384ea82550c0e139cac9aa31abb07334a1014a76ea47bc74dcd1e3</cites><orcidid>0000-0001-6054-3523 ; 0000-0001-5590-8540 ; 0000-0002-6013-8533 ; 0000-0001-9874-8022 ; 0000-0002-8944-7970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8933443$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Wu, Qiyu</creatorcontrib><creatorcontrib>Zhou, Fucai</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Feng, Da</creatorcontrib><creatorcontrib>Li, Bao</creatorcontrib><title>Lightweight Privacy-Preserving Equality Query in Edge Computing</title><title>IEEE access</title><addtitle>Access</addtitle><description>As edge computing attains tremendous popularity, IoT devices always outsource their data to nearby edge servers for storing and pre-processing, which improves the efficiency of data processing and reduces the required network resources. For privacy-preserving, sensitive data is mostly encrypted before outsourcing. Nevertheless, large volumes of data in edge computing usually comes from multiple data sources, which means that they are encrypted with different secret keys, making it difficult for edge server to query and process. Existing solutions are mostly proposed for this problem in cloud computing, but they do not take into account that the limitations of computing and storage capabilities of edge devices will prevent them from performing computationally expensive operations. In this paper, we propose a lightweight privacy-preserving equality query scheme (LPEQ) in edge computing for the first time, which allows authorized users to perform equality query efficiently and privately on the encrypted data outsourced by multiple IoT devices. We also introduce a formal security model and prove that the LPEQ meets secure requirements against curious entities under this model. Meanwhile, our theoretical analyses and experimental evaluations demonstrate that the LPEQ performs better efficiency in terms of computation and communication while retaining privacy-preserving properties. Therefore, it is practical for applications in edge computing.</description><subject>Cloud computing</subject><subject>Data processing</subject><subject>Edge computing</subject><subject>Electronic devices</subject><subject>Elliptic curve cryptography</subject><subject>Elliptic curves</subject><subject>Encryption</subject><subject>Equality</subject><subject>equality query</subject><subject>Lightweight</subject><subject>lightweight cryptography</subject><subject>Privacy</subject><subject>privacy-preserving</subject><subject>Queries</subject><subject>Servers</subject><subject>Storage</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUMFqwzAMDWODla5f0Etg53Ry7MTxaZSQbYXCOrqdjeK4mUvbtE7Skb-fs5QyHSQh3nuSnudNCcwIAfE0T9NsvZ6FQMQsFDEA4zfeKCSxCGhE49t__b03qestuEjcKOIj73lpyu_mR_fZX1lzRtUFK6trbc_mUPrZqcWdaTr_o9W2883Bz4pS-2m1P7aNAzx4dxvc1XpyqWPv6yX7TN-C5fvrIp0vA8UgaYIECUEUJAKgCdOYhFEECjShQqESiJRgngOnlCEBwpDHGhnPFWeFKoimY28x6BYVbuXRmj3aTlZo5N-gsqVE2xi107KAgm8KGkNOEsYYCMipiniY5L0kBaf1OGgdbXVqdd3IbdXagztfhiyK4hCAC4eiA0rZqq6t3ly3EpC98XIwXvbGy4vxjjUdWEZrfWUkwj3GKP0FRpp9Uw</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Wu, Qiyu</creator><creator>Zhou, Fucai</creator><creator>Xu, Jian</creator><creator>Feng, Da</creator><creator>Li, Bao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6054-3523</orcidid><orcidid>https://orcid.org/0000-0001-5590-8540</orcidid><orcidid>https://orcid.org/0000-0002-6013-8533</orcidid><orcidid>https://orcid.org/0000-0001-9874-8022</orcidid><orcidid>https://orcid.org/0000-0002-8944-7970</orcidid></search><sort><creationdate>2019</creationdate><title>Lightweight Privacy-Preserving Equality Query in Edge Computing</title><author>Wu, Qiyu ; Zhou, Fucai ; Xu, Jian ; Feng, Da ; Li, Bao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8a11aa91500384ea82550c0e139cac9aa31abb07334a1014a76ea47bc74dcd1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cloud computing</topic><topic>Data processing</topic><topic>Edge computing</topic><topic>Electronic devices</topic><topic>Elliptic curve cryptography</topic><topic>Elliptic curves</topic><topic>Encryption</topic><topic>Equality</topic><topic>equality query</topic><topic>Lightweight</topic><topic>lightweight cryptography</topic><topic>Privacy</topic><topic>privacy-preserving</topic><topic>Queries</topic><topic>Servers</topic><topic>Storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Qiyu</creatorcontrib><creatorcontrib>Zhou, Fucai</creatorcontrib><creatorcontrib>Xu, Jian</creatorcontrib><creatorcontrib>Feng, Da</creatorcontrib><creatorcontrib>Li, Bao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Qiyu</au><au>Zhou, Fucai</au><au>Xu, Jian</au><au>Feng, Da</au><au>Li, Bao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lightweight Privacy-Preserving Equality Query in Edge Computing</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>182588</spage><epage>182599</epage><pages>182588-182599</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As edge computing attains tremendous popularity, IoT devices always outsource their data to nearby edge servers for storing and pre-processing, which improves the efficiency of data processing and reduces the required network resources. For privacy-preserving, sensitive data is mostly encrypted before outsourcing. Nevertheless, large volumes of data in edge computing usually comes from multiple data sources, which means that they are encrypted with different secret keys, making it difficult for edge server to query and process. Existing solutions are mostly proposed for this problem in cloud computing, but they do not take into account that the limitations of computing and storage capabilities of edge devices will prevent them from performing computationally expensive operations. In this paper, we propose a lightweight privacy-preserving equality query scheme (LPEQ) in edge computing for the first time, which allows authorized users to perform equality query efficiently and privately on the encrypted data outsourced by multiple IoT devices. We also introduce a formal security model and prove that the LPEQ meets secure requirements against curious entities under this model. Meanwhile, our theoretical analyses and experimental evaluations demonstrate that the LPEQ performs better efficiency in terms of computation and communication while retaining privacy-preserving properties. Therefore, it is practical for applications in edge computing.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2960047</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6054-3523</orcidid><orcidid>https://orcid.org/0000-0001-5590-8540</orcidid><orcidid>https://orcid.org/0000-0002-6013-8533</orcidid><orcidid>https://orcid.org/0000-0001-9874-8022</orcidid><orcidid>https://orcid.org/0000-0002-8944-7970</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.182588-182599 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2019_2960047 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Cloud computing Data processing Edge computing Electronic devices Elliptic curve cryptography Elliptic curves Encryption Equality equality query Lightweight lightweight cryptography Privacy privacy-preserving Queries Servers Storage |
title | Lightweight Privacy-Preserving Equality Query in Edge Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lightweight%20Privacy-Preserving%20Equality%20Query%20in%20Edge%20Computing&rft.jtitle=IEEE%20access&rft.au=Wu,%20Qiyu&rft.date=2019&rft.volume=7&rft.spage=182588&rft.epage=182599&rft.pages=182588-182599&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2960047&rft_dat=%3Cproquest_cross%3E2455620079%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455620079&rft_id=info:pmid/&rft_ieee_id=8933443&rft_doaj_id=oai_doaj_org_article_d0d7fd360b18444090b3c5728bea4730&rfr_iscdi=true |