Lightweight Privacy-Preserving Equality Query in Edge Computing
As edge computing attains tremendous popularity, IoT devices always outsource their data to nearby edge servers for storing and pre-processing, which improves the efficiency of data processing and reduces the required network resources. For privacy-preserving, sensitive data is mostly encrypted befo...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.182588-182599 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As edge computing attains tremendous popularity, IoT devices always outsource their data to nearby edge servers for storing and pre-processing, which improves the efficiency of data processing and reduces the required network resources. For privacy-preserving, sensitive data is mostly encrypted before outsourcing. Nevertheless, large volumes of data in edge computing usually comes from multiple data sources, which means that they are encrypted with different secret keys, making it difficult for edge server to query and process. Existing solutions are mostly proposed for this problem in cloud computing, but they do not take into account that the limitations of computing and storage capabilities of edge devices will prevent them from performing computationally expensive operations. In this paper, we propose a lightweight privacy-preserving equality query scheme (LPEQ) in edge computing for the first time, which allows authorized users to perform equality query efficiently and privately on the encrypted data outsourced by multiple IoT devices. We also introduce a formal security model and prove that the LPEQ meets secure requirements against curious entities under this model. Meanwhile, our theoretical analyses and experimental evaluations demonstrate that the LPEQ performs better efficiency in terms of computation and communication while retaining privacy-preserving properties. Therefore, it is practical for applications in edge computing. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2960047 |