Cyber Threat Detection Based on Artificial Neural Networks Using Event Profiles

One of the major challenges in cybersecurity is the provision of an automated and effective cyber-threats detection technique. In this paper, we present an AI technique for cyber-threats detection, based on artificial neural networks. The proposed technique converts multitude of collected security e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.165607-165626
Hauptverfasser: Lee, Jonghoon, Kim, Jonghyun, Kim, Ikkyun, Han, Kijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the major challenges in cybersecurity is the provision of an automated and effective cyber-threats detection technique. In this paper, we present an AI technique for cyber-threats detection, based on artificial neural networks. The proposed technique converts multitude of collected security events to individual event profiles and use a deep learning-based detection method for enhanced cyber-threat detection. For this work, we developed an AI-SIEM system based on a combination of event profiling for data preprocessing and different artificial neural network methods, including FCNN, CNN, and LSTM. The system focuses on discriminating between true positive and false positive alerts, thus helping security analysts to rapidly respond to cyber threats. All experiments in this study are performed by authors using two benchmark datasets (NSLKDD and CICIDS2017) and two datasets collected in the real world. To evaluate the performance comparison with existing methods, we conducted experiments using the five conventional machine-learning methods (SVM, k-NN, RF, NB, and DT). Consequently, the experimental results of this study ensure that our proposed methods are capable of being employed as learning-based models for network intrusion-detection, and show that although it is employed in the real world, the performance outperforms the conventional machine-learning methods.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2953095