Prototype Small-Animal PET-CT Imaging System for Image-Guided Radiation Therapy
Molecular imaging is becoming essential for precision targeted radiation therapy, yet progress is hindered from a lack of integrated imaging and treatment systems. We report the development of a prototype positron emission tomography (PET) scanner integrated into a commercial cone beam computed tomo...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.143207-143216 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Molecular imaging is becoming essential for precision targeted radiation therapy, yet progress is hindered from a lack of integrated imaging and treatment systems. We report the development of a prototype positron emission tomography (PET) scanner integrated into a commercial cone beam computed tomography (CBCT) based small animal irradiation system for molecular-image-guided, targeted external beam radiation therapy. The PET component consists of two rotating Hamamatsu time-of-flight PET modules positioned with a bore diameter of 101.6 mm and a radial field-of-view of 53.1 mm. The measured energy resolution after linearity correction at 511 KeV was 12.9% and the timing resolution was 283.6 ps. The measured spatial resolutions at the field-of-view center and 5 mm off the radial center were 2.6 mm x 2.6 mm x 1.6 mm and 2.6 mm x 2.6 mm x 2.7 mm respectively. 18 F-Fluorodeoxyglucose-based PET imaging of a NEMA NU 4-2008 phantom resolved cylindrical volumes with diameters as small as 3 mm. To validate the system in-vivo, we performed 64 Cu-DOTA-M5A PET and computed tomography (CT) imaging of carcinoembryonic antigen (CEA)-positive colorectal cancer in athymic nude mice and compared the results with a commercially available Siemens Inveon PET/CT system. The prototype PET system performed comparably to the Siemens system for identifying the location, size, and shape of tumors. Regions of heterogeneous 64 Cu-DOTA-M5A uptake were observed. Using 64 Cu-DOTA-M5A PET and CT images, a Monte Carlo-based radiation treatment plan was created to escalate the dose to the 64 Cu-DOTA-M5A-based, highly active, biological target volume while largely sparing the normal tissue. Results demonstrate the feasibility of molecular-image-guided treatment plans using the prototype theranostic system. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2944683 |