A new spinach respiratory prediction method using particle filtering approach

Nowadays, agricultural and food technology require the integration of advanced computer technology and sophisticated computational approach for enhancing the characterization and quality of produces and their products. Huge amount of data was gathered and it needs to be processed and analyzed with c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019-01, Vol.7, p.1-1
Hauptverfasser: Saenmuang, Soraya, Aunsri, Nattapol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 7
creator Saenmuang, Soraya
Aunsri, Nattapol
description Nowadays, agricultural and food technology require the integration of advanced computer technology and sophisticated computational approach for enhancing the characterization and quality of produces and their products. Huge amount of data was gathered and it needs to be processed and analyzed with confidence that the useful information is being extracted accurately. Therefore, sophisticated computing methods are the most important parts of the overall system. Particle filtering has been recognized as an efficient tool to deliver the accurate state model prediction especially in highly nonlinear and non-Gaussian dynamical systems. In this work, a particle filter (PF) was designed for parameter estimation of respiratory of spinach storage under modified atmosphere. The Michaelis-Menten model was examined in this work for spinach respiratory mechanism under different atmospheric storage conditions to illustrate the performance of the method. The estimating results from the PF were compared to the conventional estimation techniques widely used in literature. From the experimental and computational results, we found that the particle filtering method delivers higher accuracy, outperforming the existing conventional regression method and the extended Kalman filter.
doi_str_mv 10.1109/ACCESS.2019.2941176
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2941176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8835010</ieee_id><doaj_id>oai_doaj_org_article_75ca4eba93374b7e80079d40799d0a5e</doaj_id><sourcerecordid>2455611436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a51adbc688ede1b15cbd6f0d36c775a6a74e31b2bf3c3a64e5d2271c489b98da3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBov6CXhY8tyab72Mp9QMUD-o5zCazNaVu1uwW6b83dUtxDjPDY96bGV5RTCmZU0rM3WK5XL29zStCzbwynFIlz4pJRaWZMcHk-b_-srjp-w3JoTMk1KR4WZQt_pR9F1pwn2XC3CUYYtqXXUIf3BBiW37h8Bl9uetDuy47SENwWyybsB0wHSDouhQz_7q4aGDb482xXhUf96v35ePs-fXhabl4njlO9DADQcHXTmqNHmlNhau9bIhn0iklQILiyGhd1Q1zDCRH4atKUce1qY32wK6Kp1HXR9jYLoUvSHsbIdg_IKa1PR5plXDAsQbDmOK1Qk2IMp7nZDwBgVnrdtTKL3zvsB_sJu5Sm8-3FRdCUsqZzFNsnHIp9n3C5rSVEnuwwY422IMN9mhDZk1HVkDEE0NrJggl7Bds8oRL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455611436</pqid></control><display><type>article</type><title>A new spinach respiratory prediction method using particle filtering approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Saenmuang, Soraya ; Aunsri, Nattapol</creator><creatorcontrib>Saenmuang, Soraya ; Aunsri, Nattapol</creatorcontrib><description>Nowadays, agricultural and food technology require the integration of advanced computer technology and sophisticated computational approach for enhancing the characterization and quality of produces and their products. Huge amount of data was gathered and it needs to be processed and analyzed with confidence that the useful information is being extracted accurately. Therefore, sophisticated computing methods are the most important parts of the overall system. Particle filtering has been recognized as an efficient tool to deliver the accurate state model prediction especially in highly nonlinear and non-Gaussian dynamical systems. In this work, a particle filter (PF) was designed for parameter estimation of respiratory of spinach storage under modified atmosphere. The Michaelis-Menten model was examined in this work for spinach respiratory mechanism under different atmospheric storage conditions to illustrate the performance of the method. The estimating results from the PF were compared to the conventional estimation techniques widely used in literature. From the experimental and computational results, we found that the particle filtering method delivers higher accuracy, outperforming the existing conventional regression method and the extended Kalman filter.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2941176</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agriculture ; Atmospheric modeling ; Bayes methods ; Bayesian filtering ; Biochemistry ; Extended Kalman filter ; Mathematical model ; Michaelis-Menten model ; Parameter estimation ; Parameter modification ; Particle filter ; Regression analysis ; Respiration ; Spinach</subject><ispartof>IEEE access, 2019-01, Vol.7, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a51adbc688ede1b15cbd6f0d36c775a6a74e31b2bf3c3a64e5d2271c489b98da3</citedby><cites>FETCH-LOGICAL-c408t-a51adbc688ede1b15cbd6f0d36c775a6a74e31b2bf3c3a64e5d2271c489b98da3</cites><orcidid>0000-0001-5589-9138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8835010$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Saenmuang, Soraya</creatorcontrib><creatorcontrib>Aunsri, Nattapol</creatorcontrib><title>A new spinach respiratory prediction method using particle filtering approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>Nowadays, agricultural and food technology require the integration of advanced computer technology and sophisticated computational approach for enhancing the characterization and quality of produces and their products. Huge amount of data was gathered and it needs to be processed and analyzed with confidence that the useful information is being extracted accurately. Therefore, sophisticated computing methods are the most important parts of the overall system. Particle filtering has been recognized as an efficient tool to deliver the accurate state model prediction especially in highly nonlinear and non-Gaussian dynamical systems. In this work, a particle filter (PF) was designed for parameter estimation of respiratory of spinach storage under modified atmosphere. The Michaelis-Menten model was examined in this work for spinach respiratory mechanism under different atmospheric storage conditions to illustrate the performance of the method. The estimating results from the PF were compared to the conventional estimation techniques widely used in literature. From the experimental and computational results, we found that the particle filtering method delivers higher accuracy, outperforming the existing conventional regression method and the extended Kalman filter.</description><subject>Agriculture</subject><subject>Atmospheric modeling</subject><subject>Bayes methods</subject><subject>Bayesian filtering</subject><subject>Biochemistry</subject><subject>Extended Kalman filter</subject><subject>Mathematical model</subject><subject>Michaelis-Menten model</subject><subject>Parameter estimation</subject><subject>Parameter modification</subject><subject>Particle filter</subject><subject>Regression analysis</subject><subject>Respiration</subject><subject>Spinach</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBov6CXhY8tyab72Mp9QMUD-o5zCazNaVu1uwW6b83dUtxDjPDY96bGV5RTCmZU0rM3WK5XL29zStCzbwynFIlz4pJRaWZMcHk-b_-srjp-w3JoTMk1KR4WZQt_pR9F1pwn2XC3CUYYtqXXUIf3BBiW37h8Bl9uetDuy47SENwWyybsB0wHSDouhQz_7q4aGDb482xXhUf96v35ePs-fXhabl4njlO9DADQcHXTmqNHmlNhau9bIhn0iklQILiyGhd1Q1zDCRH4atKUce1qY32wK6Kp1HXR9jYLoUvSHsbIdg_IKa1PR5plXDAsQbDmOK1Qk2IMp7nZDwBgVnrdtTKL3zvsB_sJu5Sm8-3FRdCUsqZzFNsnHIp9n3C5rSVEnuwwY422IMN9mhDZk1HVkDEE0NrJggl7Bds8oRL</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Saenmuang, Soraya</creator><creator>Aunsri, Nattapol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5589-9138</orcidid></search><sort><creationdate>20190101</creationdate><title>A new spinach respiratory prediction method using particle filtering approach</title><author>Saenmuang, Soraya ; Aunsri, Nattapol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a51adbc688ede1b15cbd6f0d36c775a6a74e31b2bf3c3a64e5d2271c489b98da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>Atmospheric modeling</topic><topic>Bayes methods</topic><topic>Bayesian filtering</topic><topic>Biochemistry</topic><topic>Extended Kalman filter</topic><topic>Mathematical model</topic><topic>Michaelis-Menten model</topic><topic>Parameter estimation</topic><topic>Parameter modification</topic><topic>Particle filter</topic><topic>Regression analysis</topic><topic>Respiration</topic><topic>Spinach</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saenmuang, Soraya</creatorcontrib><creatorcontrib>Aunsri, Nattapol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saenmuang, Soraya</au><au>Aunsri, Nattapol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new spinach respiratory prediction method using particle filtering approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>7</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Nowadays, agricultural and food technology require the integration of advanced computer technology and sophisticated computational approach for enhancing the characterization and quality of produces and their products. Huge amount of data was gathered and it needs to be processed and analyzed with confidence that the useful information is being extracted accurately. Therefore, sophisticated computing methods are the most important parts of the overall system. Particle filtering has been recognized as an efficient tool to deliver the accurate state model prediction especially in highly nonlinear and non-Gaussian dynamical systems. In this work, a particle filter (PF) was designed for parameter estimation of respiratory of spinach storage under modified atmosphere. The Michaelis-Menten model was examined in this work for spinach respiratory mechanism under different atmospheric storage conditions to illustrate the performance of the method. The estimating results from the PF were compared to the conventional estimation techniques widely used in literature. From the experimental and computational results, we found that the particle filtering method delivers higher accuracy, outperforming the existing conventional regression method and the extended Kalman filter.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2941176</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5589-9138</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019-01, Vol.7, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_crossref_primary_10_1109_ACCESS_2019_2941176
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Agriculture
Atmospheric modeling
Bayes methods
Bayesian filtering
Biochemistry
Extended Kalman filter
Mathematical model
Michaelis-Menten model
Parameter estimation
Parameter modification
Particle filter
Regression analysis
Respiration
Spinach
title A new spinach respiratory prediction method using particle filtering approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20spinach%20respiratory%20prediction%20method%20using%20particle%20filtering%20approach&rft.jtitle=IEEE%20access&rft.au=Saenmuang,%20Soraya&rft.date=2019-01-01&rft.volume=7&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2941176&rft_dat=%3Cproquest_cross%3E2455611436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455611436&rft_id=info:pmid/&rft_ieee_id=8835010&rft_doaj_id=oai_doaj_org_article_75ca4eba93374b7e80079d40799d0a5e&rfr_iscdi=true