A new spinach respiratory prediction method using particle filtering approach
Nowadays, agricultural and food technology require the integration of advanced computer technology and sophisticated computational approach for enhancing the characterization and quality of produces and their products. Huge amount of data was gathered and it needs to be processed and analyzed with c...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019-01, Vol.7, p.1-1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 7 |
creator | Saenmuang, Soraya Aunsri, Nattapol |
description | Nowadays, agricultural and food technology require the integration of advanced computer technology and sophisticated computational approach for enhancing the characterization and quality of produces and their products. Huge amount of data was gathered and it needs to be processed and analyzed with confidence that the useful information is being extracted accurately. Therefore, sophisticated computing methods are the most important parts of the overall system. Particle filtering has been recognized as an efficient tool to deliver the accurate state model prediction especially in highly nonlinear and non-Gaussian dynamical systems. In this work, a particle filter (PF) was designed for parameter estimation of respiratory of spinach storage under modified atmosphere. The Michaelis-Menten model was examined in this work for spinach respiratory mechanism under different atmospheric storage conditions to illustrate the performance of the method. The estimating results from the PF were compared to the conventional estimation techniques widely used in literature. From the experimental and computational results, we found that the particle filtering method delivers higher accuracy, outperforming the existing conventional regression method and the extended Kalman filter. |
doi_str_mv | 10.1109/ACCESS.2019.2941176 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2941176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8835010</ieee_id><doaj_id>oai_doaj_org_article_75ca4eba93374b7e80079d40799d0a5e</doaj_id><sourcerecordid>2455611436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-a51adbc688ede1b15cbd6f0d36c775a6a74e31b2bf3c3a64e5d2271c489b98da3</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBov6CXhY8tyab72Mp9QMUD-o5zCazNaVu1uwW6b83dUtxDjPDY96bGV5RTCmZU0rM3WK5XL29zStCzbwynFIlz4pJRaWZMcHk-b_-srjp-w3JoTMk1KR4WZQt_pR9F1pwn2XC3CUYYtqXXUIf3BBiW37h8Bl9uetDuy47SENwWyybsB0wHSDouhQz_7q4aGDb482xXhUf96v35ePs-fXhabl4njlO9DADQcHXTmqNHmlNhau9bIhn0iklQILiyGhd1Q1zDCRH4atKUce1qY32wK6Kp1HXR9jYLoUvSHsbIdg_IKa1PR5plXDAsQbDmOK1Qk2IMp7nZDwBgVnrdtTKL3zvsB_sJu5Sm8-3FRdCUsqZzFNsnHIp9n3C5rSVEnuwwY422IMN9mhDZk1HVkDEE0NrJggl7Bds8oRL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455611436</pqid></control><display><type>article</type><title>A new spinach respiratory prediction method using particle filtering approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Saenmuang, Soraya ; Aunsri, Nattapol</creator><creatorcontrib>Saenmuang, Soraya ; Aunsri, Nattapol</creatorcontrib><description>Nowadays, agricultural and food technology require the integration of advanced computer technology and sophisticated computational approach for enhancing the characterization and quality of produces and their products. Huge amount of data was gathered and it needs to be processed and analyzed with confidence that the useful information is being extracted accurately. Therefore, sophisticated computing methods are the most important parts of the overall system. Particle filtering has been recognized as an efficient tool to deliver the accurate state model prediction especially in highly nonlinear and non-Gaussian dynamical systems. In this work, a particle filter (PF) was designed for parameter estimation of respiratory of spinach storage under modified atmosphere. The Michaelis-Menten model was examined in this work for spinach respiratory mechanism under different atmospheric storage conditions to illustrate the performance of the method. The estimating results from the PF were compared to the conventional estimation techniques widely used in literature. From the experimental and computational results, we found that the particle filtering method delivers higher accuracy, outperforming the existing conventional regression method and the extended Kalman filter.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2941176</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agriculture ; Atmospheric modeling ; Bayes methods ; Bayesian filtering ; Biochemistry ; Extended Kalman filter ; Mathematical model ; Michaelis-Menten model ; Parameter estimation ; Parameter modification ; Particle filter ; Regression analysis ; Respiration ; Spinach</subject><ispartof>IEEE access, 2019-01, Vol.7, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-a51adbc688ede1b15cbd6f0d36c775a6a74e31b2bf3c3a64e5d2271c489b98da3</citedby><cites>FETCH-LOGICAL-c408t-a51adbc688ede1b15cbd6f0d36c775a6a74e31b2bf3c3a64e5d2271c489b98da3</cites><orcidid>0000-0001-5589-9138</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8835010$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,27632,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Saenmuang, Soraya</creatorcontrib><creatorcontrib>Aunsri, Nattapol</creatorcontrib><title>A new spinach respiratory prediction method using particle filtering approach</title><title>IEEE access</title><addtitle>Access</addtitle><description>Nowadays, agricultural and food technology require the integration of advanced computer technology and sophisticated computational approach for enhancing the characterization and quality of produces and their products. Huge amount of data was gathered and it needs to be processed and analyzed with confidence that the useful information is being extracted accurately. Therefore, sophisticated computing methods are the most important parts of the overall system. Particle filtering has been recognized as an efficient tool to deliver the accurate state model prediction especially in highly nonlinear and non-Gaussian dynamical systems. In this work, a particle filter (PF) was designed for parameter estimation of respiratory of spinach storage under modified atmosphere. The Michaelis-Menten model was examined in this work for spinach respiratory mechanism under different atmospheric storage conditions to illustrate the performance of the method. The estimating results from the PF were compared to the conventional estimation techniques widely used in literature. From the experimental and computational results, we found that the particle filtering method delivers higher accuracy, outperforming the existing conventional regression method and the extended Kalman filter.</description><subject>Agriculture</subject><subject>Atmospheric modeling</subject><subject>Bayes methods</subject><subject>Bayesian filtering</subject><subject>Biochemistry</subject><subject>Extended Kalman filter</subject><subject>Mathematical model</subject><subject>Michaelis-Menten model</subject><subject>Parameter estimation</subject><subject>Parameter modification</subject><subject>Particle filter</subject><subject>Regression analysis</subject><subject>Respiration</subject><subject>Spinach</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBov6CXhY8tyab72Mp9QMUD-o5zCazNaVu1uwW6b83dUtxDjPDY96bGV5RTCmZU0rM3WK5XL29zStCzbwynFIlz4pJRaWZMcHk-b_-srjp-w3JoTMk1KR4WZQt_pR9F1pwn2XC3CUYYtqXXUIf3BBiW37h8Bl9uetDuy47SENwWyybsB0wHSDouhQz_7q4aGDb482xXhUf96v35ePs-fXhabl4njlO9DADQcHXTmqNHmlNhau9bIhn0iklQILiyGhd1Q1zDCRH4atKUce1qY32wK6Kp1HXR9jYLoUvSHsbIdg_IKa1PR5plXDAsQbDmOK1Qk2IMp7nZDwBgVnrdtTKL3zvsB_sJu5Sm8-3FRdCUsqZzFNsnHIp9n3C5rSVEnuwwY422IMN9mhDZk1HVkDEE0NrJggl7Bds8oRL</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Saenmuang, Soraya</creator><creator>Aunsri, Nattapol</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5589-9138</orcidid></search><sort><creationdate>20190101</creationdate><title>A new spinach respiratory prediction method using particle filtering approach</title><author>Saenmuang, Soraya ; Aunsri, Nattapol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-a51adbc688ede1b15cbd6f0d36c775a6a74e31b2bf3c3a64e5d2271c489b98da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>Atmospheric modeling</topic><topic>Bayes methods</topic><topic>Bayesian filtering</topic><topic>Biochemistry</topic><topic>Extended Kalman filter</topic><topic>Mathematical model</topic><topic>Michaelis-Menten model</topic><topic>Parameter estimation</topic><topic>Parameter modification</topic><topic>Particle filter</topic><topic>Regression analysis</topic><topic>Respiration</topic><topic>Spinach</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saenmuang, Soraya</creatorcontrib><creatorcontrib>Aunsri, Nattapol</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saenmuang, Soraya</au><au>Aunsri, Nattapol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new spinach respiratory prediction method using particle filtering approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>7</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Nowadays, agricultural and food technology require the integration of advanced computer technology and sophisticated computational approach for enhancing the characterization and quality of produces and their products. Huge amount of data was gathered and it needs to be processed and analyzed with confidence that the useful information is being extracted accurately. Therefore, sophisticated computing methods are the most important parts of the overall system. Particle filtering has been recognized as an efficient tool to deliver the accurate state model prediction especially in highly nonlinear and non-Gaussian dynamical systems. In this work, a particle filter (PF) was designed for parameter estimation of respiratory of spinach storage under modified atmosphere. The Michaelis-Menten model was examined in this work for spinach respiratory mechanism under different atmospheric storage conditions to illustrate the performance of the method. The estimating results from the PF were compared to the conventional estimation techniques widely used in literature. From the experimental and computational results, we found that the particle filtering method delivers higher accuracy, outperforming the existing conventional regression method and the extended Kalman filter.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2941176</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-5589-9138</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019-01, Vol.7, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2019_2941176 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Agriculture Atmospheric modeling Bayes methods Bayesian filtering Biochemistry Extended Kalman filter Mathematical model Michaelis-Menten model Parameter estimation Parameter modification Particle filter Regression analysis Respiration Spinach |
title | A new spinach respiratory prediction method using particle filtering approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T08%3A12%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20spinach%20respiratory%20prediction%20method%20using%20particle%20filtering%20approach&rft.jtitle=IEEE%20access&rft.au=Saenmuang,%20Soraya&rft.date=2019-01-01&rft.volume=7&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2941176&rft_dat=%3Cproquest_cross%3E2455611436%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455611436&rft_id=info:pmid/&rft_ieee_id=8835010&rft_doaj_id=oai_doaj_org_article_75ca4eba93374b7e80079d40799d0a5e&rfr_iscdi=true |