A new spinach respiratory prediction method using particle filtering approach

Nowadays, agricultural and food technology require the integration of advanced computer technology and sophisticated computational approach for enhancing the characterization and quality of produces and their products. Huge amount of data was gathered and it needs to be processed and analyzed with c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019-01, Vol.7, p.1-1
Hauptverfasser: Saenmuang, Soraya, Aunsri, Nattapol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, agricultural and food technology require the integration of advanced computer technology and sophisticated computational approach for enhancing the characterization and quality of produces and their products. Huge amount of data was gathered and it needs to be processed and analyzed with confidence that the useful information is being extracted accurately. Therefore, sophisticated computing methods are the most important parts of the overall system. Particle filtering has been recognized as an efficient tool to deliver the accurate state model prediction especially in highly nonlinear and non-Gaussian dynamical systems. In this work, a particle filter (PF) was designed for parameter estimation of respiratory of spinach storage under modified atmosphere. The Michaelis-Menten model was examined in this work for spinach respiratory mechanism under different atmospheric storage conditions to illustrate the performance of the method. The estimating results from the PF were compared to the conventional estimation techniques widely used in literature. From the experimental and computational results, we found that the particle filtering method delivers higher accuracy, outperforming the existing conventional regression method and the extended Kalman filter.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2941176