First-order Difference Bare Bones Particle Swarm Optimizer
The Bare Bones Particle Swarm Optimization (BBPSO), because of its implementation simplicity, has been a popular swarm-based metaheuristic algorithm for solving optimization problems. However, as found in its many variants, their search behaviors were not considered in the design. Instead of employi...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019-01, Vol.7, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 7 |
creator | Li, Ruowei Peng, Yeping Shi, Haiyan Wu, Hongkun Liu, Shilong Kwok, Ngaiming |
description | The Bare Bones Particle Swarm Optimization (BBPSO), because of its implementation simplicity, has been a popular swarm-based metaheuristic algorithm for solving optimization problems. However, as found in its many variants, their search behaviors were not considered in the design. Instead of employing heuristics, we formulate a low complexity particle swarm optimizer, called the First-Order Bare Bones Particle Swarm Optimizer (FODBB), whose behavior obeys the principle of first-order difference equations. The search trajectory can be constructed in a prescribed manner together with decreasing random searches that enable particles to explore the search space more completely. This characteristic thus allows for a wider search coverage at initial iterations and consequently improves the search performance. A comparative evaluation with recently reported BBPSO algorithms was conducted and experimental results indicate that the proposed optimizer outperforms others in a majority of benchmark optimization functions. |
doi_str_mv | 10.1109/ACCESS.2019.2940704 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1109_ACCESS_2019_2940704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8834777</ieee_id><doaj_id>oai_doaj_org_article_65c9e7416e01454fb697d7b15d462e20</doaj_id><sourcerecordid>2455610022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-59503b85f8a340f6ddf423a7a95bce434027fdaa3ddeca4d2dbdb0aff10982f23</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqf0FvSx43prvbLzV1WqhUKF6DtnNRLa0TU22iP56t24pzmFmeMx7M_MQGhM8IQTru2lZPq1WE4qJnlDNscL8Ag0okTpngsnLf_01GqW0xl0UHSTUAN3PmpjaPEQHMXtsvIcIuxqyBxu7FHaQslcb26beQLb6snGbLfdts21-IN6gK283CUanOkTvs6e38iVfLJ_n5XSR1xwXbS60wKwqhC8s49hL5zynzCqrRVUD7zCqvLOWOQe15Y66ylXYet_9VlBP2RDNe10X7NrsY7O18dsE25g_IMQPc7rQSFFrUJxIwIQL7iuplVMVEY5LChR3Wre91j6GzwOk1qzDIe668w3lQkiCMT1uZP1UHUNKEfx5K8Hm6LnpPTdHz83J84417lkNAJwZRcG4Uor9AnNse9c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455610022</pqid></control><display><type>article</type><title>First-order Difference Bare Bones Particle Swarm Optimizer</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Li, Ruowei ; Peng, Yeping ; Shi, Haiyan ; Wu, Hongkun ; Liu, Shilong ; Kwok, Ngaiming</creator><creatorcontrib>Li, Ruowei ; Peng, Yeping ; Shi, Haiyan ; Wu, Hongkun ; Liu, Shilong ; Kwok, Ngaiming</creatorcontrib><description>The Bare Bones Particle Swarm Optimization (BBPSO), because of its implementation simplicity, has been a popular swarm-based metaheuristic algorithm for solving optimization problems. However, as found in its many variants, their search behaviors were not considered in the design. Instead of employing heuristics, we formulate a low complexity particle swarm optimizer, called the First-Order Bare Bones Particle Swarm Optimizer (FODBB), whose behavior obeys the principle of first-order difference equations. The search trajectory can be constructed in a prescribed manner together with decreasing random searches that enable particles to explore the search space more completely. This characteristic thus allows for a wider search coverage at initial iterations and consequently improves the search performance. A comparative evaluation with recently reported BBPSO algorithms was conducted and experimental results indicate that the proposed optimizer outperforms others in a majority of benchmark optimization functions.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2940704</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Bare bones particle swarm optimizer ; Bones ; Computational complexity ; Difference equations ; first-order difference ; Heuristic algorithms ; Heuristic methods ; low complexity ; Optimization ; Particle swarm optimization ; reducing randomness ; Searching ; Space exploration</subject><ispartof>IEEE access, 2019-01, Vol.7, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-59503b85f8a340f6ddf423a7a95bce434027fdaa3ddeca4d2dbdb0aff10982f23</citedby><cites>FETCH-LOGICAL-c408t-59503b85f8a340f6ddf423a7a95bce434027fdaa3ddeca4d2dbdb0aff10982f23</cites><orcidid>0000-0003-3509-1152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8834777$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Li, Ruowei</creatorcontrib><creatorcontrib>Peng, Yeping</creatorcontrib><creatorcontrib>Shi, Haiyan</creatorcontrib><creatorcontrib>Wu, Hongkun</creatorcontrib><creatorcontrib>Liu, Shilong</creatorcontrib><creatorcontrib>Kwok, Ngaiming</creatorcontrib><title>First-order Difference Bare Bones Particle Swarm Optimizer</title><title>IEEE access</title><addtitle>Access</addtitle><description>The Bare Bones Particle Swarm Optimization (BBPSO), because of its implementation simplicity, has been a popular swarm-based metaheuristic algorithm for solving optimization problems. However, as found in its many variants, their search behaviors were not considered in the design. Instead of employing heuristics, we formulate a low complexity particle swarm optimizer, called the First-Order Bare Bones Particle Swarm Optimizer (FODBB), whose behavior obeys the principle of first-order difference equations. The search trajectory can be constructed in a prescribed manner together with decreasing random searches that enable particles to explore the search space more completely. This characteristic thus allows for a wider search coverage at initial iterations and consequently improves the search performance. A comparative evaluation with recently reported BBPSO algorithms was conducted and experimental results indicate that the proposed optimizer outperforms others in a majority of benchmark optimization functions.</description><subject>Algorithms</subject><subject>Bare bones particle swarm optimizer</subject><subject>Bones</subject><subject>Computational complexity</subject><subject>Difference equations</subject><subject>first-order difference</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>low complexity</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>reducing randomness</subject><subject>Searching</subject><subject>Space exploration</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1LAzEQDaJgqf0FvSx43prvbLzV1WqhUKF6DtnNRLa0TU22iP56t24pzmFmeMx7M_MQGhM8IQTru2lZPq1WE4qJnlDNscL8Ag0okTpngsnLf_01GqW0xl0UHSTUAN3PmpjaPEQHMXtsvIcIuxqyBxu7FHaQslcb26beQLb6snGbLfdts21-IN6gK283CUanOkTvs6e38iVfLJ_n5XSR1xwXbS60wKwqhC8s49hL5zynzCqrRVUD7zCqvLOWOQe15Y66ylXYet_9VlBP2RDNe10X7NrsY7O18dsE25g_IMQPc7rQSFFrUJxIwIQL7iuplVMVEY5LChR3Wre91j6GzwOk1qzDIe668w3lQkiCMT1uZP1UHUNKEfx5K8Hm6LnpPTdHz83J84417lkNAJwZRcG4Uor9AnNse9c</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Li, Ruowei</creator><creator>Peng, Yeping</creator><creator>Shi, Haiyan</creator><creator>Wu, Hongkun</creator><creator>Liu, Shilong</creator><creator>Kwok, Ngaiming</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3509-1152</orcidid></search><sort><creationdate>20190101</creationdate><title>First-order Difference Bare Bones Particle Swarm Optimizer</title><author>Li, Ruowei ; Peng, Yeping ; Shi, Haiyan ; Wu, Hongkun ; Liu, Shilong ; Kwok, Ngaiming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-59503b85f8a340f6ddf423a7a95bce434027fdaa3ddeca4d2dbdb0aff10982f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bare bones particle swarm optimizer</topic><topic>Bones</topic><topic>Computational complexity</topic><topic>Difference equations</topic><topic>first-order difference</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>low complexity</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>reducing randomness</topic><topic>Searching</topic><topic>Space exploration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ruowei</creatorcontrib><creatorcontrib>Peng, Yeping</creatorcontrib><creatorcontrib>Shi, Haiyan</creatorcontrib><creatorcontrib>Wu, Hongkun</creatorcontrib><creatorcontrib>Liu, Shilong</creatorcontrib><creatorcontrib>Kwok, Ngaiming</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ruowei</au><au>Peng, Yeping</au><au>Shi, Haiyan</au><au>Wu, Hongkun</au><au>Liu, Shilong</au><au>Kwok, Ngaiming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-order Difference Bare Bones Particle Swarm Optimizer</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019-01-01</date><risdate>2019</risdate><volume>7</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The Bare Bones Particle Swarm Optimization (BBPSO), because of its implementation simplicity, has been a popular swarm-based metaheuristic algorithm for solving optimization problems. However, as found in its many variants, their search behaviors were not considered in the design. Instead of employing heuristics, we formulate a low complexity particle swarm optimizer, called the First-Order Bare Bones Particle Swarm Optimizer (FODBB), whose behavior obeys the principle of first-order difference equations. The search trajectory can be constructed in a prescribed manner together with decreasing random searches that enable particles to explore the search space more completely. This characteristic thus allows for a wider search coverage at initial iterations and consequently improves the search performance. A comparative evaluation with recently reported BBPSO algorithms was conducted and experimental results indicate that the proposed optimizer outperforms others in a majority of benchmark optimization functions.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2940704</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3509-1152</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019-01, Vol.7, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_crossref_primary_10_1109_ACCESS_2019_2940704 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Bare bones particle swarm optimizer Bones Computational complexity Difference equations first-order difference Heuristic algorithms Heuristic methods low complexity Optimization Particle swarm optimization reducing randomness Searching Space exploration |
title | First-order Difference Bare Bones Particle Swarm Optimizer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-order%20Difference%20Bare%20Bones%20Particle%20Swarm%20Optimizer&rft.jtitle=IEEE%20access&rft.au=Li,%20Ruowei&rft.date=2019-01-01&rft.volume=7&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2940704&rft_dat=%3Cproquest_cross%3E2455610022%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455610022&rft_id=info:pmid/&rft_ieee_id=8834777&rft_doaj_id=oai_doaj_org_article_65c9e7416e01454fb697d7b15d462e20&rfr_iscdi=true |