First-order Difference Bare Bones Particle Swarm Optimizer
The Bare Bones Particle Swarm Optimization (BBPSO), because of its implementation simplicity, has been a popular swarm-based metaheuristic algorithm for solving optimization problems. However, as found in its many variants, their search behaviors were not considered in the design. Instead of employi...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019-01, Vol.7, p.1-1 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Bare Bones Particle Swarm Optimization (BBPSO), because of its implementation simplicity, has been a popular swarm-based metaheuristic algorithm for solving optimization problems. However, as found in its many variants, their search behaviors were not considered in the design. Instead of employing heuristics, we formulate a low complexity particle swarm optimizer, called the First-Order Bare Bones Particle Swarm Optimizer (FODBB), whose behavior obeys the principle of first-order difference equations. The search trajectory can be constructed in a prescribed manner together with decreasing random searches that enable particles to explore the search space more completely. This characteristic thus allows for a wider search coverage at initial iterations and consequently improves the search performance. A comparative evaluation with recently reported BBPSO algorithms was conducted and experimental results indicate that the proposed optimizer outperforms others in a majority of benchmark optimization functions. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2940704 |