Efficient Power Management Algorithm Based on Fuzzy Logic Inference for Electric Vehicles Parking Lot

Smart grid is expected to support electric vehicles parking lots with the existing power line infrastructure. In order to support all electric-vehicles (EVs) users to complete their charging needs before leaving the parking lot, the power grid requires that the charging demands of EVs should be with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.65467-65485
Hauptverfasser: Hussain, Shahid, Ahmed, Mohamed A., Kim, Young-Chon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Smart grid is expected to support electric vehicles parking lots with the existing power line infrastructure. In order to support all electric-vehicles (EVs) users to complete their charging needs before leaving the parking lot, the power grid requires that the charging demands of EVs should be within the allowable power limit to avoid the grid overloading. This paper proposes a fuzzy logic inference based algorithm (FLIA) to manage the available power efficiently for EVs in the parking lot. The problem is mathematically formulated and solved by the credibility of the fuzzy inference mechanism to control charging and discharging of the EVs. The key idea is to introduce the fuzzy inference mechanism that evaluates several uncertain input parameters from the electric grid and from EVs to obtain an adequately accurate charging or discharging decision for each of the connected EVs. The proposed scheme is applied to a parking lot with different parking capacities and compared with the conventional-based systems. The simulation results demonstrated the feasibility and effectiveness of the proposed algorithm when dealing with the available power management and satisfying the EV user's requirements.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2917297