Fine-Grained Communication-Aware Task Scheduling Approach for Acyclic and Cyclic Applications on MPSoCs
Fine-grained task models can exploit parallelism to achieve high performance for multiprocessor system-on-chip (MPSoC). However, fine-grained models face the issues of high-communication overhead and difficult scheduling decisions, and the two challenges are inter-dependent. To address the issues, t...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.54372-54389 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fine-grained task models can exploit parallelism to achieve high performance for multiprocessor system-on-chip (MPSoC). However, fine-grained models face the issues of high-communication overhead and difficult scheduling decisions, and the two challenges are inter-dependent. To address the issues, this paper gives a full analysis of the fine-grained communication optimization technique and communication pipeline, from both time and topology perspectives, and proposes a static fine-grained communication-aware task scheduling (FCATS) approach, which integrates scheduling with communication pipeline for acyclic and cyclic applications based on the fine-grained Simulink model. The approach contains search-based scheduling with high-quality solutions utilizing genetic algorithm-integer linear programming (GA-ILP) and hybrid GA-heuristic scheduling with short solving time to meet different demands for users. The experimental results with both synthetic and real-life benchmarks on the 4/8/16-CPU platform demonstrate the efficiency of the approach on performance improvements compared to previous works. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2911653 |