Dielectric Characterization of In Vivo Abdominal and Thoracic Tissues in the 0.5-26.5 GHz Frequency Band for Wireless Body Area Networks

The dielectric properties of biological tissues are of utmost importance in the development of wireless body area networks (WBANs), especially for implanted devices. The early design stages of medical devices like capsule endoscopy, pacemakers, or physiological sensors rely on precise knowledge of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.31854-31864
Hauptverfasser: Fornes-Leal, Alejandro, Cardona, Narcis, Frasson, Matteo, Castello-Palacios, Sergio, Nevarez, Andrea, Pons Beltran, Vicente, Garcia-Pardo, Concepcion
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dielectric properties of biological tissues are of utmost importance in the development of wireless body area networks (WBANs), especially for implanted devices. The early design stages of medical devices like capsule endoscopy, pacemakers, or physiological sensors rely on precise knowledge of the dielectric properties of the tissues present in their surrounding medium. Many of these applications make use of electromagnetic phantoms, which are software or physical models that imitate the shape and the electromagnetic properties of the tissues. They are used for designing devices in software simulations and for testing them in laboratory trials, aiding in both the development of WBAN antennas or in communication link evaluations. The existing reports about dielectric in vivo properties are limited and have drawbacks like: low variety of characterized tissues, lacking some relevant ones, and limitations and inhomogeneity in the measured frequency range. This paper aims at filling that gap by providing a new database of dielectric properties of biological tissues measured in vivo . In particular, it is focused on the tissues of the thoracic and the abdominal regions, measured at the same wide frequency band, on the same animal specimen, and under the same conditions. The properties have been obtained by measuring porcine tissues in the 0.5-26.5 GHz band with the open-ended coaxial technique. In this paper, we focus on those tissues that have been scarcely characterized so far in the literature, like heart, esophagus, stomach, and pancreas. The Cole-Cole fitting parameters of the measured tissues and their uncertainties are provided.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2019.2903481