Deep Belief Network Modeling for Automatic Liver Segmentation
The liver segmentation in CT scan images is a significant step toward the development of a quantitative biomarker for computer-aided diagnosis. In this paper, we propose an automatic feature learning algorithm based on the deep belief network (DBN) for liver segmentation. The proposed method was bas...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.20585-20595 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The liver segmentation in CT scan images is a significant step toward the development of a quantitative biomarker for computer-aided diagnosis. In this paper, we propose an automatic feature learning algorithm based on the deep belief network (DBN) for liver segmentation. The proposed method was based on training by a DBN for unsupervised pretraining and supervised fine tuning. The whole method of pretraining and fine tuning is known as DBN-DNN. In traditional machine learning algorithms, the pixel-by-pixel learning is a time-consuming task; therefore, we use blocks as a basic unit for feature learning to identify the liver, which saves memory and computational time. An automatic active contour method is applied to refine the liver in post-processing. The experiments on test images show that the proposed algorithm obtained satisfactory results on healthy and pathological liver CT images. Our algorithm achieved 94.80% Dice similarity coefficient on mixed (healthy and pathological) images while 91.83% on pathological liver images, which is better than those of the state-of-the-art methods. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2019.2896961 |