Particle Swarm Optimization Feature Selection for Breast Cancer Recurrence Prediction

Women who have recovered from breast cancer (BC) always fear its recurrence. The fact that they have endured the painstaking treatment makes recurrence their greatest fear. However, with current advancements in technology, early recurrence prediction can help patients receive treatment earlier. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2018-01, Vol.6, p.29637-29647
Hauptverfasser: Sakri, Sapiah Binti, Abdul Rashid, Nuraini Binti, Muhammad Zain, Zuhaira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Women who have recovered from breast cancer (BC) always fear its recurrence. The fact that they have endured the painstaking treatment makes recurrence their greatest fear. However, with current advancements in technology, early recurrence prediction can help patients receive treatment earlier. The availability of extensive data and advanced methods make accurate and fast prediction possible. This research aims to compare the accuracy of a few existing data mining algorithms in predicting BC recurrence. It embeds a particle swarm optimization as feature selection into three renowned classifiers, namely, naive Bayes, K-nearest neighbor, and fast decision tree learner, with the objective of increasing the accuracy level of the prediction model.
ISSN:2169-3536
2169-3536
DOI:10.1109/ACCESS.2018.2843443