A Comparative Evaluation of Atrial Fibrillation Detection Methods in Koreans Based on Optical Recordings Using a Smartphone
This paper evaluated three methods of atrial fibrillation (AF) detection in Korean patients using 149 records of photoplethysmography signals from 148 participants: the k-nearest neighbor (kNN), neural network (NN), and support vector machine (SVM) methods. The 149 records are preprocessed to calcul...
Gespeichert in:
Veröffentlicht in: | IEEE access 2017, Vol.5, p.11437-11443 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper evaluated three methods of atrial fibrillation (AF) detection in Korean patients using 149 records of photoplethysmography signals from 148 participants: the k-nearest neighbor (kNN), neural network (NN), and support vector machine (SVM) methods. The 149 records are preprocessed to calculate the root-mean square of the successive differences in the R-R intervals and Shannon entropy which are validated from x-means and Massachusetts Institute of Technology and Beth Israel Hospital database for the features for AF detection. A smartphone camera was used to obtain photoplethysmography signals. Clinicians labeled 29 records by referring to the electrocardiogram signals. These labeled records were used as a ground truth set to evaluate the accuracy of each method. In the experiments, the kNN, NN, and SVM methods achieved 98.65%, 99.32%, and 97.98% accuracies, respectively. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2017.2700488 |