A linear algebraic framework for dynamic feedback linearization

To any accessible nonlinear system we associate a so-called infinitesimal Brunovsky form. This gives an algebraic criterion for strong accessibility as well as a generalization of Kronecker controllability indices. An output function which defines a right-invertible system without zero dynamics is s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control 1995-01, Vol.40 (1), p.127-132
Hauptverfasser: Aranda-Bricaire, E., Moog, C.H., Pomet, J.-B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To any accessible nonlinear system we associate a so-called infinitesimal Brunovsky form. This gives an algebraic criterion for strong accessibility as well as a generalization of Kronecker controllability indices. An output function which defines a right-invertible system without zero dynamics is shown to exist if and only if the basis of the Brunovsky form can be transformed into a system of exact differential forms. This is equivalent to the system being differentially flat and hence constitutes a necessary and sufficient condition for dynamic feedback linearizability.< >
ISSN:0018-9286
1558-2523
DOI:10.1109/9.362886