Discriminative weighting of HMM state-likelihoods using the GPD method

We propose a new method of finding discriminative state-weights recursively using the generalized probabilistic descent method. This method is implemented with minor modification of the conventional parameter estimation and recognition algorithms by constraining the sum of the state-weights to the n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 1996-09, Vol.3 (9), p.257-259
Hauptverfasser: Kwon, O.W., Un, C.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new method of finding discriminative state-weights recursively using the generalized probabilistic descent method. This method is implemented with minor modification of the conventional parameter estimation and recognition algorithms by constraining the sum of the state-weights to the number of states in a recognition unit, and can be applied to continuous speech recognition as well as isolated word recognition. We confirm the validity of the method with phoneme-based and word-based state-weighting schemes for three kinds of recognition tasks.
ISSN:1070-9908
1558-2361
DOI:10.1109/97.536594