Improving functional density using run-time circuit reconfiguration [FPGAs]

The ability to provide flexibility and allow fine-grain circuit specialization make field programmable gate arrays (FPGA's) ideal candidates for computing elements within application-specific architectures. The benefits of gate-level specialization and reconfigurability can be extended by recon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on very large scale integration (VLSI) systems 1998-06, Vol.6 (2), p.247-256
Hauptverfasser: Wirthlin, M.J., Hutchings, B.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to provide flexibility and allow fine-grain circuit specialization make field programmable gate arrays (FPGA's) ideal candidates for computing elements within application-specific architectures. The benefits of gate-level specialization and reconfigurability can be extended by reconfiguring circuit resources at run-time. This technique, termed run-time reconfiguration (RTR), allows the exploitation of dynamic conditions or temporal locality within application-specific problems. For several applications, this technique has been shown to reduce the hardware resources required for computation. The use of this technique on conventional FPGA's, however, requires additional time for circuit reconfiguration. A functional density metric is introduced that balances the advantages of RTR against its associated reconfiguration costs. This metric is used to justify run-time reconfiguration against other more conventional approaches. Several run-time reconfigured applications are presented and analyzed using this approach.
ISSN:1063-8210
1557-9999
DOI:10.1109/92.678880