The EM/MPM algorithm for segmentation of textured images: analysis and further experimental results

In this paper we present new results relative to the "expectation-maximization/maximization of the posterior marginals" (EM/MPM) algorithm for simultaneous parameter estimation and segmentation of textured images. The EM/MPM algorithm uses a Markov random field model for the pixel class la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2000-10, Vol.9 (10), p.1731-1744
Hauptverfasser: Comer, M.L., Delp, E.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present new results relative to the "expectation-maximization/maximization of the posterior marginals" (EM/MPM) algorithm for simultaneous parameter estimation and segmentation of textured images. The EM/MPM algorithm uses a Markov random field model for the pixel class labels and alternately approximates the MPM estimate of the pixel class labels and estimates parameters of the observed image model. The goal of the EM/MPM algorithm is to minimize the expected value of the number of misclassified pixels. We present new theoretical results in this paper which show that the algorithm can be expected to achieve this goal, to the extent that the EM estimates of the model parameters are close to the true values of the model parameters. We also present new experimental results demonstrating the performance of the EM/MPM algorithm.
ISSN:1057-7149
1941-0042
DOI:10.1109/83.869185