Adaptive model-based motion estimation

A general discrete-time, adaptive, multidimensional framework is introduced for estimating the motion of one or several object features from their successive nonlinear projections on an image plane. The motion model consists of a set of linear difference equations with parameters estimated recursive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 1994-09, Vol.3 (5), p.469-481
Hauptverfasser: Crinon, R.J., Kolodziej, W.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A general discrete-time, adaptive, multidimensional framework is introduced for estimating the motion of one or several object features from their successive nonlinear projections on an image plane. The motion model consists of a set of linear difference equations with parameters estimated recursively from a nonlinear observation equation. The model dimensionality corresponds to that of the original, nonprojected motion space, thus allowing to compensate for variable projection characteristics such as paning and zooming of the camera. Extended recursive least-squares and linear-quadratic tracking algorithms are used to adaptively adjust the model parameters and minimize the errors of either smoothing, filtering or prediction of the object trajectories in the projection plane. Both algorithms are derived using a second order approximation of the projection nonlinearities. All the results presented here use a generalized vectorial notation suitable for motion estimation of any finite number of object features and various approximations of the nonlinear projection. The application of the model-based motion estimator for temporal decimation/interpolation in digital video sequence compression systems is presented.< >
ISSN:1057-7149
1941-0042
DOI:10.1109/83.334993