A multilayer neural network structure for analog filtering

The design of analog filters has been a topic of research for many years, yielding a wide variety of techniques for addressing the problem. The work described here approaches this task from a neural network perspective to obtain some of the advantages of neural systems, such as a high tolerance to c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 1996-08, Vol.43 (8), p.613-618
Hauptverfasser: Mehr, I., Sculley, T.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The design of analog filters has been a topic of research for many years, yielding a wide variety of techniques for addressing the problem. The work described here approaches this task from a neural network perspective to obtain some of the advantages of neural systems, such as a high tolerance to component imprecision and an ability to train or adapt high-order structures. Investigations of linear filter networks utilizing neural-like system topologies are presented, along with accompanying training algorithms and simulation results. Design of a reduced interconnect network in 2 /spl mu/m CMOS is suggested, with simulations indicating its potential for implementing high order, self-programming analog filters at bandwidths above 70 MHz.
ISSN:1057-7130
1558-125X
DOI:10.1109/82.532009