VLSI architectures for the discrete wavelet transform

A class of VLSI architectures based on linear systolic arrays, for computing the 1-D Discrete Wavelet Transform (DWT), is presented. The various architectures of this class differ only in the design of their routing networks, which could be systolic, semisystolic, or RAM-based. These architectures c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. 2, Analog and digital signal processing Analog and digital signal processing, 1995-05, Vol.42 (5), p.305-316
Hauptverfasser: Vishwanath, M., Owens, R.M., Irwin, M.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A class of VLSI architectures based on linear systolic arrays, for computing the 1-D Discrete Wavelet Transform (DWT), is presented. The various architectures of this class differ only in the design of their routing networks, which could be systolic, semisystolic, or RAM-based. These architectures compute the Recursive Pyramid Algorithm, which is a reformulation of Mallat's pyramid algorithm for the DWT. The DWT is computed in real time (running DWT), using just N/sub w/(J-1) cells of storage, where N/sub w/ is the length of the filter and J is the number of octaves. They are ideally suited for single-chip implementation due to their practical I/O rate, small storage, and regularity. The N-point 1-D DWT is computed in 2N cycles. The period can be reduced to N cycles by using N/sub w/ extra MAC's. Our architectures are shown to be optimal in both computation time and in area. A utilization of 100% is achieved for the linear array. Extensions of our architecture for computing the M-band DWT are discussed. Also, two architectures for computing the 2-D DWT (separable case) are discussed. One of these architectures, based on a combination of systolic and parallel filters, computes the N/sup 2/-point 2-D DWT, in real time, in N/sup 2/+N cycles, using 2NN/sub w/ cells of storage.< >
ISSN:1057-7130
1558-125X
DOI:10.1109/82.386170