Retargeting RSFQ cells to a submicron fabrication process
There is a desire to move current state-of-the-art niobium Josephson IC fabrication processes (/spl sim/3 /spl mu/m) to smaller sub-micron linewidths in order to realize a decrease in gate size and increase in both speed and packing density. However, cost and time dictates that a way be found to reu...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on applied superconductivity 2001-03, Vol.11 (1), p.369-372 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There is a desire to move current state-of-the-art niobium Josephson IC fabrication processes (/spl sim/3 /spl mu/m) to smaller sub-micron linewidths in order to realize a decrease in gate size and increase in both speed and packing density. However, cost and time dictates that a way be found to reuse the existing RSFQ gate/cell development that has been done at the 3-/spl mu/m level. Cell retargeting is the process of migrating existing designs to a new technology, with the effort focused on the maximum reuse of existing material. We have investigated a number of issues critical to this process, including both the physical and electrical aspects. Comments are made on methodologies for RSFQ cell retargeting with respect to existing reduced-linewidth JJ fabrication processes. Experimental demonstrations are shown for retargeted RSFQ static digital frequency dividers (toggle flip-flops) operating at 220 GHz, 240 GHz, and 395 GHz. |
---|---|
ISSN: | 1051-8223 1558-2515 |
DOI: | 10.1109/77.919359 |