Confidence estimation methods for neural networks: a practical comparison

Feedforward neural networks, particularly multilayer perceptrons, are widely used in regression and classification tasks. A reliable and practical measure of prediction confidence is essential. In this work three alternative approaches to prediction confidence estimation are presented and compared....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2001-11, Vol.12 (6), p.1278-1287
Hauptverfasser: Papadopoulos, G., Edwards, P.J., Murray, A.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1287
container_issue 6
container_start_page 1278
container_title IEEE transaction on neural networks and learning systems
container_volume 12
creator Papadopoulos, G.
Edwards, P.J.
Murray, A.F.
description Feedforward neural networks, particularly multilayer perceptrons, are widely used in regression and classification tasks. A reliable and practical measure of prediction confidence is essential. In this work three alternative approaches to prediction confidence estimation are presented and compared. The three methods are the maximum likelihood, approximate Bayesian, and the bootstrap technique. We consider prediction uncertainty owing to both data noise and model parameter misspecification. The methods are tested on a number of controlled artificial problems and a real, industrial regression application, the prediction of paper "curl". Confidence estimation performance is assessed by calculating the mean and standard deviation of the prediction interval coverage probability. We show that treating data noise variance as a function of the inputs is appropriate for the curl prediction task. Moreover, we show that the mean coverage probability can only gauge confidence estimation performance as an average over the input space, i.e., global performance and that the standard deviation of the coverage is unreliable as a measure of local performance. The approximate Bayesian approach is found to perform better in terms of global performance.
doi_str_mv 10.1109/72.963764
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_72_963764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>963764</ieee_id><sourcerecordid>734250365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-87fcacd4713627337d9f3dfeb6a771aa98a3e32bf7af70515ad919f1ed36952d3</originalsourceid><addsrcrecordid>eNqN0btLxDAcB_AgineeDq4OUhwUh555p3GTw8fBgYvOJZcH9mybmrSI_72RHgoO4vQLySe_PL4AHCM4RwjKK4HnkhPB6Q6YIklRDqEku2kMKcslxmICDmLcQIgog3wfTFCBqZRMTMFy4VtXGdtqm9nYV43qK99mje1fvImZ8yFr7RBUnUr_7sNrvM5U1gWl-0qnWe2bToUq-vYQ7DlVR3u0rTPwfHf7tHjIV4_3y8XNKtdEwj4vhNNKGyoQ4VgQIox0xDi75koIpJQsFLEEr51QTkCGmDISSYesIVwybMgMXIx9u-DfhnTnsqmitnWtWuuHWApCMYOEsyTP_5S4wJiy_0DOOWWIJnj2C278ENr03FJiWHAh08kzcDkiHXyMwbqyC-lfw0eJYPmVVylwOeaV7Om24bBurPmR24ASOBlBZa39Xt7u_gRSiJc3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920867950</pqid></control><display><type>article</type><title>Confidence estimation methods for neural networks: a practical comparison</title><source>IEEE Electronic Library (IEL)</source><creator>Papadopoulos, G. ; Edwards, P.J. ; Murray, A.F.</creator><creatorcontrib>Papadopoulos, G. ; Edwards, P.J. ; Murray, A.F.</creatorcontrib><description>Feedforward neural networks, particularly multilayer perceptrons, are widely used in regression and classification tasks. A reliable and practical measure of prediction confidence is essential. In this work three alternative approaches to prediction confidence estimation are presented and compared. The three methods are the maximum likelihood, approximate Bayesian, and the bootstrap technique. We consider prediction uncertainty owing to both data noise and model parameter misspecification. The methods are tested on a number of controlled artificial problems and a real, industrial regression application, the prediction of paper "curl". Confidence estimation performance is assessed by calculating the mean and standard deviation of the prediction interval coverage probability. We show that treating data noise variance as a function of the inputs is appropriate for the curl prediction task. Moreover, we show that the mean coverage probability can only gauge confidence estimation performance as an average over the input space, i.e., global performance and that the standard deviation of the coverage is unreliable as a measure of local performance. The approximate Bayesian approach is found to perform better in terms of global performance.</description><identifier>ISSN: 1045-9227</identifier><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 1941-0093</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/72.963764</identifier><identifier>PMID: 18249957</identifier><identifier>CODEN: ITNNEP</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bayesian analysis ; Bayesian methods ; Confidence ; Feedforward neural networks ; Industrial control ; Maximum likelihood estimation ; Multi-layer neural network ; Multilayer perceptrons ; Neural networks ; Predictive models ; Probability ; Studies ; Testing</subject><ispartof>IEEE transaction on neural networks and learning systems, 2001-11, Vol.12 (6), p.1278-1287</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-87fcacd4713627337d9f3dfeb6a771aa98a3e32bf7af70515ad919f1ed36952d3</citedby><cites>FETCH-LOGICAL-c390t-87fcacd4713627337d9f3dfeb6a771aa98a3e32bf7af70515ad919f1ed36952d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/963764$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/963764$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18249957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Papadopoulos, G.</creatorcontrib><creatorcontrib>Edwards, P.J.</creatorcontrib><creatorcontrib>Murray, A.F.</creatorcontrib><title>Confidence estimation methods for neural networks: a practical comparison</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNN</addtitle><addtitle>IEEE Trans Neural Netw</addtitle><description>Feedforward neural networks, particularly multilayer perceptrons, are widely used in regression and classification tasks. A reliable and practical measure of prediction confidence is essential. In this work three alternative approaches to prediction confidence estimation are presented and compared. The three methods are the maximum likelihood, approximate Bayesian, and the bootstrap technique. We consider prediction uncertainty owing to both data noise and model parameter misspecification. The methods are tested on a number of controlled artificial problems and a real, industrial regression application, the prediction of paper "curl". Confidence estimation performance is assessed by calculating the mean and standard deviation of the prediction interval coverage probability. We show that treating data noise variance as a function of the inputs is appropriate for the curl prediction task. Moreover, we show that the mean coverage probability can only gauge confidence estimation performance as an average over the input space, i.e., global performance and that the standard deviation of the coverage is unreliable as a measure of local performance. The approximate Bayesian approach is found to perform better in terms of global performance.</description><subject>Bayesian analysis</subject><subject>Bayesian methods</subject><subject>Confidence</subject><subject>Feedforward neural networks</subject><subject>Industrial control</subject><subject>Maximum likelihood estimation</subject><subject>Multi-layer neural network</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Probability</subject><subject>Studies</subject><subject>Testing</subject><issn>1045-9227</issn><issn>2162-237X</issn><issn>1941-0093</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqN0btLxDAcB_AgineeDq4OUhwUh555p3GTw8fBgYvOJZcH9mybmrSI_72RHgoO4vQLySe_PL4AHCM4RwjKK4HnkhPB6Q6YIklRDqEku2kMKcslxmICDmLcQIgog3wfTFCBqZRMTMFy4VtXGdtqm9nYV43qK99mje1fvImZ8yFr7RBUnUr_7sNrvM5U1gWl-0qnWe2bToUq-vYQ7DlVR3u0rTPwfHf7tHjIV4_3y8XNKtdEwj4vhNNKGyoQ4VgQIox0xDi75koIpJQsFLEEr51QTkCGmDISSYesIVwybMgMXIx9u-DfhnTnsqmitnWtWuuHWApCMYOEsyTP_5S4wJiy_0DOOWWIJnj2C278ENr03FJiWHAh08kzcDkiHXyMwbqyC-lfw0eJYPmVVylwOeaV7Om24bBurPmR24ASOBlBZa39Xt7u_gRSiJc3</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Papadopoulos, G.</creator><creator>Edwards, P.J.</creator><creator>Murray, A.F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20011101</creationdate><title>Confidence estimation methods for neural networks: a practical comparison</title><author>Papadopoulos, G. ; Edwards, P.J. ; Murray, A.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-87fcacd4713627337d9f3dfeb6a771aa98a3e32bf7af70515ad919f1ed36952d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Bayesian analysis</topic><topic>Bayesian methods</topic><topic>Confidence</topic><topic>Feedforward neural networks</topic><topic>Industrial control</topic><topic>Maximum likelihood estimation</topic><topic>Multi-layer neural network</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Probability</topic><topic>Studies</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Papadopoulos, G.</creatorcontrib><creatorcontrib>Edwards, P.J.</creatorcontrib><creatorcontrib>Murray, A.F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Papadopoulos, G.</au><au>Edwards, P.J.</au><au>Murray, A.F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Confidence estimation methods for neural networks: a practical comparison</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNN</stitle><addtitle>IEEE Trans Neural Netw</addtitle><date>2001-11-01</date><risdate>2001</risdate><volume>12</volume><issue>6</issue><spage>1278</spage><epage>1287</epage><pages>1278-1287</pages><issn>1045-9227</issn><issn>2162-237X</issn><eissn>1941-0093</eissn><eissn>2162-2388</eissn><coden>ITNNEP</coden><abstract>Feedforward neural networks, particularly multilayer perceptrons, are widely used in regression and classification tasks. A reliable and practical measure of prediction confidence is essential. In this work three alternative approaches to prediction confidence estimation are presented and compared. The three methods are the maximum likelihood, approximate Bayesian, and the bootstrap technique. We consider prediction uncertainty owing to both data noise and model parameter misspecification. The methods are tested on a number of controlled artificial problems and a real, industrial regression application, the prediction of paper "curl". Confidence estimation performance is assessed by calculating the mean and standard deviation of the prediction interval coverage probability. We show that treating data noise variance as a function of the inputs is appropriate for the curl prediction task. Moreover, we show that the mean coverage probability can only gauge confidence estimation performance as an average over the input space, i.e., global performance and that the standard deviation of the coverage is unreliable as a measure of local performance. The approximate Bayesian approach is found to perform better in terms of global performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18249957</pmid><doi>10.1109/72.963764</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9227
ispartof IEEE transaction on neural networks and learning systems, 2001-11, Vol.12 (6), p.1278-1287
issn 1045-9227
2162-237X
1941-0093
2162-2388
language eng
recordid cdi_crossref_primary_10_1109_72_963764
source IEEE Electronic Library (IEL)
subjects Bayesian analysis
Bayesian methods
Confidence
Feedforward neural networks
Industrial control
Maximum likelihood estimation
Multi-layer neural network
Multilayer perceptrons
Neural networks
Predictive models
Probability
Studies
Testing
title Confidence estimation methods for neural networks: a practical comparison
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A58%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Confidence%20estimation%20methods%20for%20neural%20networks:%20a%20practical%20comparison&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Papadopoulos,%20G.&rft.date=2001-11-01&rft.volume=12&rft.issue=6&rft.spage=1278&rft.epage=1287&rft.pages=1278-1287&rft.issn=1045-9227&rft.eissn=1941-0093&rft.coden=ITNNEP&rft_id=info:doi/10.1109/72.963764&rft_dat=%3Cproquest_RIE%3E734250365%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=920867950&rft_id=info:pmid/18249957&rft_ieee_id=963764&rfr_iscdi=true