Confidence estimation methods for neural networks: a practical comparison

Feedforward neural networks, particularly multilayer perceptrons, are widely used in regression and classification tasks. A reliable and practical measure of prediction confidence is essential. In this work three alternative approaches to prediction confidence estimation are presented and compared....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2001-11, Vol.12 (6), p.1278-1287
Hauptverfasser: Papadopoulos, G., Edwards, P.J., Murray, A.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Feedforward neural networks, particularly multilayer perceptrons, are widely used in regression and classification tasks. A reliable and practical measure of prediction confidence is essential. In this work three alternative approaches to prediction confidence estimation are presented and compared. The three methods are the maximum likelihood, approximate Bayesian, and the bootstrap technique. We consider prediction uncertainty owing to both data noise and model parameter misspecification. The methods are tested on a number of controlled artificial problems and a real, industrial regression application, the prediction of paper "curl". Confidence estimation performance is assessed by calculating the mean and standard deviation of the prediction interval coverage probability. We show that treating data noise variance as a function of the inputs is appropriate for the curl prediction task. Moreover, we show that the mean coverage probability can only gauge confidence estimation performance as an average over the input space, i.e., global performance and that the standard deviation of the coverage is unreliable as a measure of local performance. The approximate Bayesian approach is found to perform better in terms of global performance.
ISSN:1045-9227
2162-237X
1941-0093
2162-2388
DOI:10.1109/72.963764