Subset selection for improved parameter estimation in on-line identification of a synchronous generator

This paper examines subset selection for nonlinear least squares parameter estimation, and applies the methodology to a test system previously studied in the power system literature, involving the on-line identification of a synchronous generator model with many parameters. Subset selection partitio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 1999-02, Vol.14 (1), p.218-225
Hauptverfasser: Burth, M., Verghese, G.C., Velez-Reyes, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper examines subset selection for nonlinear least squares parameter estimation, and applies the methodology to a test system previously studied in the power system literature, involving the on-line identification of a synchronous generator model with many parameters. Subset selection partitions the parameters into well-conditioned and ill-conditioned subsets. We show for the test system that fixing the ill-conditioned parameters to prior estimates (even if these prior estimates are substantially in error), and estimating only the remaining parameters, significantly improves the performance of the estimation algorithm and greatly enhances the quality of the estimated parameters. It is shown that attempts to estimate all of the model parameters, as done in the original work with this test system, can yield extremely unreliable results.
ISSN:0885-8950
1558-0679
DOI:10.1109/59.744536