A study of synthetic-aperture imaging with virtual source elements in B-mode ultrasound imaging systems
We propose an all point transmit and receive focusing method based on transmit synthetic focusing combined with receive dynamic focusing in a linear array transducer. In the method, on transmit, a virtual source element is assumed to be located at the transmit focal depth of conventional B-mode imag...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 2000-11, Vol.47 (6), p.1510-1519 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose an all point transmit and receive focusing method based on transmit synthetic focusing combined with receive dynamic focusing in a linear array transducer. In the method, on transmit, a virtual source element is assumed to be located at the transmit focal depth of conventional B-mode imaging systems, and transmit synthetic focusing is used in two half planes, one before and the other after the transmit focal depth, using the RF data of each scanline, together with all other relevant RF scanline data previously stored. The proposed new method uses the same data acquisition scheme as the conventional focusing method while maintaining the same frame rate via high-speed signal processing, but it is not suitable for imaging moving objects. It improves upon the lateral resolution and sidelobe level at all imaging depths. Also, it increases the transmit power and image signal-to-noise ratio (SNR), due to transmit field synthesis, and extends the image penetration depth as well. Evaluations with simulation and experimental data show much improvement in resolution and SNR at all imaging depths. |
---|---|
ISSN: | 0885-3010 1525-8955 |
DOI: | 10.1109/58.883540 |