Microbend sensor structure for use in distributed and quasi-distributed sensor systems based on selective launching and filtering of the modes in graded index multimode fiber

This paper describes a novel optical fiber microbend sensor architecture which my be utilized in distributed and quasi-distributed measurement. The actual sensor element is graded index multimode fiber coupled to the measurand field through the usual microbend inducing structures. However, the feed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 1999-10, Vol.17 (10), p.1856-1868
Hauptverfasser: Donlagic, D., Culshaw, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper describes a novel optical fiber microbend sensor architecture which my be utilized in distributed and quasi-distributed measurement. The actual sensor element is graded index multimode fiber coupled to the measurand field through the usual microbend inducing structures. However, the feed to the sensing section is through a single-mode fiber spliced to the multimode fiber to ensure that only the lowest order spatial mode is launched. Similarly the receiver is also coupled to the sensing element through a single mode fiber. The single mode within multimode fiber propagates with minimal mode coupling with source to receiver losses of typically 0.7 dB for short sensors ranging to approximately 0.3 dB per each additional kilometer of sensing fiber. The sensitivity of this structure to microbend induced losses has been thoroughly characterized. Typically the optical power loss for a given microbend structure and force is about three to six times higher in this architecture than for conventional fully mode filled microbend sensor. The structure is also almost totally insensitive to macrobend induced losses and allows a variety of novel designs in microbend inducing structures. Additionally, spatial mode filters allow effective control over concatenation effects that are common in microbend sensors.
ISSN:0733-8724
1558-2213
DOI:10.1109/50.793766