Physical design of testable CMOS digital integrated circuits
A methodology for physical testability assessment and enhancement, implemented with a set of test tools, is presented. The methodology, which can improve the physical design of testable CMOS digital ICs, is supported in realistic fault-list generation and classification. Two measures of physical tes...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 1991-07, Vol.26 (7), p.1064-1072 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A methodology for physical testability assessment and enhancement, implemented with a set of test tools, is presented. The methodology, which can improve the physical design of testable CMOS digital ICs, is supported in realistic fault-list generation and classification. Two measures of physical testability, weighted class fault coverage and fault incidence, and one measure of fault hardness are introduced. The testability is evaluated prior to fault simulation; difficult-to-detect faults are located on the layout and correlated with the physical defects which originate them; and suggestions for layout reconfiguration are provided. Several design examples are described, ascertaining the usefulness of the proposed methodology. The proposed methodology demonstrated that stuck-at test sets only partially cover the realistic faults in digital CMOS designs. Moreover, it is shown that classical fault models of arbitrary faults are insufficient to describe the realistic fault set. Simulation results have shown that the fault set strongly depends on the technology and on the layout style.< > |
---|---|
ISSN: | 0018-9200 1558-173X |
DOI: | 10.1109/4.92027 |