Optimal tracking of time-varying channels: a frequency domain approach for known and new algorithms
In this paper, we developed a systematic frequency domain approach to analyze adaptive tracking algorithms for fast time-varying channels. The analysis is performed with the help of two new concepts, a tracking filter and a tracking error filter, which are used to calculate the mean square identific...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 1995-01, Vol.13 (1), p.141-154 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we developed a systematic frequency domain approach to analyze adaptive tracking algorithms for fast time-varying channels. The analysis is performed with the help of two new concepts, a tracking filter and a tracking error filter, which are used to calculate the mean square identification error (MSIE). First, we analyze existing algorithms, the least mean squares (LMS) algorithm, the exponential windowed recursive least squares (EW-RLS) algorithm and the rectangular windowed recursive least squares (RW-RLS) algorithm. The equivalence of the three algorithms is demonstrated by employing the frequency domain method. A unified expression for the MSIE of all three algorithms is derived. Secondly, we use the frequency domain analysis method to develop an optimal windowed recursive least squares (OW-RLS) algorithm. We derive the expression for the MSIE of an arbitrary windowed RLS algorithm and optimize the window shape to minimize the MSIE. Compared with an exponential window having an optimized forgetting factor, an optimal window results in a significant improvement in the h MSIE. Thirdly, we propose two types of robust windows, the average robust window and the minimax robust window. The RLS algorithms designed with these windows have near-optimal performance, but do not require detailed statistics of the channel.< > |
---|---|
ISSN: | 0733-8716 1558-0008 |
DOI: | 10.1109/49.363137 |