Delay prediction from resistance-capacitance models of general MOS circuits

Most existing techniques for computing the delay in linear resistance-capacitance (RC) networks will yield inaccurate results when applied to MOS transistor circuits, because they do not provide a means for determining the MOSFET's effective channel resistance, which is a function of the capaci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computer-aided design of integrated circuits and systems 1993-07, Vol.12 (7), p.997-1003
Hauptverfasser: Martin, D., Rumin, N.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1003
container_issue 7
container_start_page 997
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 12
creator Martin, D.
Rumin, N.C.
description Most existing techniques for computing the delay in linear resistance-capacitance (RC) networks will yield inaccurate results when applied to MOS transistor circuits, because they do not provide a means for determining the MOSFET's effective channel resistance, which is a function of the capacitive load. The iterative method, in which the RC network is converted to a tree by node splitting is an exception. An efficient algorithm which takes the above dependence into account by adjusting the resistances in the model within the iterative process of the LM algorithm is presented. It is shown that by focusing on high-capacitance nodes and by distributing the split capacitances on the basis of path conductances, it is possible in many cases to dispense with iteration. For large transistor groups, decomposition into biconnected components is shown to be very effective. Combinations of these techniques have been tested on a large variety of circuits, a representative subset of which is presented.< >
doi_str_mv 10.1109/43.238036
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_43_238036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>238036</ieee_id><sourcerecordid>28222218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-ae101285b0b13abe798bd199d3425137de16d17be8d1bb0b274c275ea92ff8943</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EEuVjYGXygJAYUny2E9sjKp-iqAMwR45zQUb5wk6H_ntSUnXmljvpfe4dHkIugM0BmLmVYs6FZiI7IDMwQiUSUjgkM8aVThhT7JicxPjNGMiUmxl5vcfabmgfsPRu8F1Lq9A1NGD0cbCtw8TZ3jr_d9OmK7GOtKvoF7YYbE3fVu_U-eDWfohn5KiydcTz3T4ln48PH4vnZLl6elncLRMnhBoSi8CA67RgBQhboDK6KMGYUkieglAlQlaCKlCXUIwQV9JxlaI1vKq0keKUXE-9feh-1hiHvPHRYV3bFrt1zLnWGRtt_APk44AewZsJdKGLMWCV98E3NmxyYPnWay5FPnkd2atdqY3O1lUYzfi4fxBKS5ZtscsJ84i4T3cdv-xAfqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28222218</pqid></control><display><type>article</type><title>Delay prediction from resistance-capacitance models of general MOS circuits</title><source>IEEE Electronic Library (IEL)</source><creator>Martin, D. ; Rumin, N.C.</creator><creatorcontrib>Martin, D. ; Rumin, N.C.</creatorcontrib><description>Most existing techniques for computing the delay in linear resistance-capacitance (RC) networks will yield inaccurate results when applied to MOS transistor circuits, because they do not provide a means for determining the MOSFET's effective channel resistance, which is a function of the capacitive load. The iterative method, in which the RC network is converted to a tree by node splitting is an exception. An efficient algorithm which takes the above dependence into account by adjusting the resistances in the model within the iterative process of the LM algorithm is presented. It is shown that by focusing on high-capacitance nodes and by distributing the split capacitances on the basis of path conductances, it is possible in many cases to dispense with iteration. For large transistor groups, decomposition into biconnected components is shown to be very effective. Combinations of these techniques have been tested on a large variety of circuits, a representative subset of which is presented.&lt; &gt;</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/43.238036</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Circuit testing ; Computational modeling ; Computer networks ; Delay effects ; Delay lines ; Design. Technologies. Operation analysis. Testing ; Electronics ; Exact sciences and technology ; Integrated circuits ; Microelectronics ; MOSFETs ; Parasitic capacitance ; Predictive models ; Resistors ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 1993-07, Vol.12 (7), p.997-1003</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-ae101285b0b13abe798bd199d3425137de16d17be8d1bb0b274c275ea92ff8943</citedby><cites>FETCH-LOGICAL-c337t-ae101285b0b13abe798bd199d3425137de16d17be8d1bb0b274c275ea92ff8943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/238036$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/238036$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3784066$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, D.</creatorcontrib><creatorcontrib>Rumin, N.C.</creatorcontrib><title>Delay prediction from resistance-capacitance models of general MOS circuits</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Most existing techniques for computing the delay in linear resistance-capacitance (RC) networks will yield inaccurate results when applied to MOS transistor circuits, because they do not provide a means for determining the MOSFET's effective channel resistance, which is a function of the capacitive load. The iterative method, in which the RC network is converted to a tree by node splitting is an exception. An efficient algorithm which takes the above dependence into account by adjusting the resistances in the model within the iterative process of the LM algorithm is presented. It is shown that by focusing on high-capacitance nodes and by distributing the split capacitances on the basis of path conductances, it is possible in many cases to dispense with iteration. For large transistor groups, decomposition into biconnected components is shown to be very effective. Combinations of these techniques have been tested on a large variety of circuits, a representative subset of which is presented.&lt; &gt;</description><subject>Applied sciences</subject><subject>Circuit testing</subject><subject>Computational modeling</subject><subject>Computer networks</subject><subject>Delay effects</subject><subject>Delay lines</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Microelectronics</subject><subject>MOSFETs</subject><subject>Parasitic capacitance</subject><subject>Predictive models</subject><subject>Resistors</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EEuVjYGXygJAYUny2E9sjKp-iqAMwR45zQUb5wk6H_ntSUnXmljvpfe4dHkIugM0BmLmVYs6FZiI7IDMwQiUSUjgkM8aVThhT7JicxPjNGMiUmxl5vcfabmgfsPRu8F1Lq9A1NGD0cbCtw8TZ3jr_d9OmK7GOtKvoF7YYbE3fVu_U-eDWfohn5KiydcTz3T4ln48PH4vnZLl6elncLRMnhBoSi8CA67RgBQhboDK6KMGYUkieglAlQlaCKlCXUIwQV9JxlaI1vKq0keKUXE-9feh-1hiHvPHRYV3bFrt1zLnWGRtt_APk44AewZsJdKGLMWCV98E3NmxyYPnWay5FPnkd2atdqY3O1lUYzfi4fxBKS5ZtscsJ84i4T3cdv-xAfqM</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>Martin, D.</creator><creator>Rumin, N.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope></search><sort><creationdate>19930701</creationdate><title>Delay prediction from resistance-capacitance models of general MOS circuits</title><author>Martin, D. ; Rumin, N.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-ae101285b0b13abe798bd199d3425137de16d17be8d1bb0b274c275ea92ff8943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Applied sciences</topic><topic>Circuit testing</topic><topic>Computational modeling</topic><topic>Computer networks</topic><topic>Delay effects</topic><topic>Delay lines</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Microelectronics</topic><topic>MOSFETs</topic><topic>Parasitic capacitance</topic><topic>Predictive models</topic><topic>Resistors</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, D.</creatorcontrib><creatorcontrib>Rumin, N.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Martin, D.</au><au>Rumin, N.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delay prediction from resistance-capacitance models of general MOS circuits</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>1993-07-01</date><risdate>1993</risdate><volume>12</volume><issue>7</issue><spage>997</spage><epage>1003</epage><pages>997-1003</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Most existing techniques for computing the delay in linear resistance-capacitance (RC) networks will yield inaccurate results when applied to MOS transistor circuits, because they do not provide a means for determining the MOSFET's effective channel resistance, which is a function of the capacitive load. The iterative method, in which the RC network is converted to a tree by node splitting is an exception. An efficient algorithm which takes the above dependence into account by adjusting the resistances in the model within the iterative process of the LM algorithm is presented. It is shown that by focusing on high-capacitance nodes and by distributing the split capacitances on the basis of path conductances, it is possible in many cases to dispense with iteration. For large transistor groups, decomposition into biconnected components is shown to be very effective. Combinations of these techniques have been tested on a large variety of circuits, a representative subset of which is presented.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/43.238036</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 1993-07, Vol.12 (7), p.997-1003
issn 0278-0070
1937-4151
language eng
recordid cdi_crossref_primary_10_1109_43_238036
source IEEE Electronic Library (IEL)
subjects Applied sciences
Circuit testing
Computational modeling
Computer networks
Delay effects
Delay lines
Design. Technologies. Operation analysis. Testing
Electronics
Exact sciences and technology
Integrated circuits
Microelectronics
MOSFETs
Parasitic capacitance
Predictive models
Resistors
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Delay prediction from resistance-capacitance models of general MOS circuits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delay%20prediction%20from%20resistance-capacitance%20models%20of%20general%20MOS%20circuits&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Martin,%20D.&rft.date=1993-07-01&rft.volume=12&rft.issue=7&rft.spage=997&rft.epage=1003&rft.pages=997-1003&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/43.238036&rft_dat=%3Cproquest_RIE%3E28222218%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28222218&rft_id=info:pmid/&rft_ieee_id=238036&rfr_iscdi=true