Neural network control for DC motor micromaneuvering

The application of a neural network controller for compensating the effects induced by the friction in a DC motor micromaneuvering system is considered in this article. A backpropagation neural network operating in the specialized learning mode, using the sign gradient descent algorithm, is employed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 1995-10, Vol.42 (5), p.516-523
Hauptverfasser: Tzes, A., Pei-Yuan Peng, Chen-Chung Houng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 523
container_issue 5
container_start_page 516
container_title IEEE transactions on industrial electronics (1982)
container_volume 42
creator Tzes, A.
Pei-Yuan Peng
Chen-Chung Houng
description The application of a neural network controller for compensating the effects induced by the friction in a DC motor micromaneuvering system is considered in this article. A backpropagation neural network operating in the specialized learning mode, using the sign gradient descent algorithm, is employed. The input vector to the neural network controller consists of the time history of the motor angular shaft velocity within a prespecified time window. The on-line training of the neural network is performed in the region of interest of the output domain. The neural network output resembles that of a pulse width modulated controller. The effect of the number of neurons in the input and hidden layers on the transient system response is explored. Experimental studies are presented to indicate the effectiveness of the proposed algorithm.< >
doi_str_mv 10.1109/41.464615
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_41_464615</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>464615</ieee_id><sourcerecordid>28489566</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-166f0b3e62539f519abf17f05ccd010a3c0d9ce5b01d89096cf824bf9930f7c63</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqUwsDJlQEgMKXfxR-wRlU-pggVmy3FtFEjiYicg_j2pUrEy3Un33KO7l5BThAUiqCuGCyaYQL5HZsh5mSvF5D6ZQVHKHICJQ3KU0jsAMo58RtiTG6Jpss713yF-ZDZ0fQxN5kPMbpZZG_qxaWsbQ2s6N3y5WHdvx-TAmya5k12dk9e725flQ756vn9cXq9yS2nZ5yiEh4o6UXCqPEdlKo-lB27tGhAMtbBW1vEKcC0VKGG9LFjllaLgSyvonFxM3k0Mn4NLvW7rZF3TjKeEIelCMSqVhP9ByaTiYmu8nMDxoZSi83oT69bEH42gtwFqhnoKcGTPd1KTrGl8NJ2t098CFRLpeMCcnE1Y7Zz7m-4cv1HJdpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28489566</pqid></control><display><type>article</type><title>Neural network control for DC motor micromaneuvering</title><source>IEEE Electronic Library (IEL)</source><creator>Tzes, A. ; Pei-Yuan Peng ; Chen-Chung Houng</creator><creatorcontrib>Tzes, A. ; Pei-Yuan Peng ; Chen-Chung Houng</creatorcontrib><description>The application of a neural network controller for compensating the effects induced by the friction in a DC motor micromaneuvering system is considered in this article. A backpropagation neural network operating in the specialized learning mode, using the sign gradient descent algorithm, is employed. The input vector to the neural network controller consists of the time history of the motor angular shaft velocity within a prespecified time window. The on-line training of the neural network is performed in the region of interest of the output domain. The neural network output resembles that of a pulse width modulated controller. The effect of the number of neurons in the input and hidden layers on the transient system response is explored. Experimental studies are presented to indicate the effectiveness of the proposed algorithm.&lt; &gt;</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/41.464615</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Angular velocity control ; Applied sciences ; Backpropagation algorithms ; Computer science; control theory; systems ; Control systems ; Control theory. Systems ; DC motors ; Exact sciences and technology ; Friction ; History ; Neural networks ; Pulse width modulation ; Robotics ; Shafts ; Space vector pulse width modulation</subject><ispartof>IEEE transactions on industrial electronics (1982), 1995-10, Vol.42 (5), p.516-523</ispartof><rights>1995 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-166f0b3e62539f519abf17f05ccd010a3c0d9ce5b01d89096cf824bf9930f7c63</citedby><cites>FETCH-LOGICAL-c337t-166f0b3e62539f519abf17f05ccd010a3c0d9ce5b01d89096cf824bf9930f7c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/464615$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/464615$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3681394$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tzes, A.</creatorcontrib><creatorcontrib>Pei-Yuan Peng</creatorcontrib><creatorcontrib>Chen-Chung Houng</creatorcontrib><title>Neural network control for DC motor micromaneuvering</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>The application of a neural network controller for compensating the effects induced by the friction in a DC motor micromaneuvering system is considered in this article. A backpropagation neural network operating in the specialized learning mode, using the sign gradient descent algorithm, is employed. The input vector to the neural network controller consists of the time history of the motor angular shaft velocity within a prespecified time window. The on-line training of the neural network is performed in the region of interest of the output domain. The neural network output resembles that of a pulse width modulated controller. The effect of the number of neurons in the input and hidden layers on the transient system response is explored. Experimental studies are presented to indicate the effectiveness of the proposed algorithm.&lt; &gt;</description><subject>Angular velocity control</subject><subject>Applied sciences</subject><subject>Backpropagation algorithms</subject><subject>Computer science; control theory; systems</subject><subject>Control systems</subject><subject>Control theory. Systems</subject><subject>DC motors</subject><subject>Exact sciences and technology</subject><subject>Friction</subject><subject>History</subject><subject>Neural networks</subject><subject>Pulse width modulation</subject><subject>Robotics</subject><subject>Shafts</subject><subject>Space vector pulse width modulation</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqUwsDJlQEgMKXfxR-wRlU-pggVmy3FtFEjiYicg_j2pUrEy3Un33KO7l5BThAUiqCuGCyaYQL5HZsh5mSvF5D6ZQVHKHICJQ3KU0jsAMo58RtiTG6Jpss713yF-ZDZ0fQxN5kPMbpZZG_qxaWsbQ2s6N3y5WHdvx-TAmya5k12dk9e725flQ756vn9cXq9yS2nZ5yiEh4o6UXCqPEdlKo-lB27tGhAMtbBW1vEKcC0VKGG9LFjllaLgSyvonFxM3k0Mn4NLvW7rZF3TjKeEIelCMSqVhP9ByaTiYmu8nMDxoZSi83oT69bEH42gtwFqhnoKcGTPd1KTrGl8NJ2t098CFRLpeMCcnE1Y7Zz7m-4cv1HJdpQ</recordid><startdate>19951001</startdate><enddate>19951001</enddate><creator>Tzes, A.</creator><creator>Pei-Yuan Peng</creator><creator>Chen-Chung Houng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>19951001</creationdate><title>Neural network control for DC motor micromaneuvering</title><author>Tzes, A. ; Pei-Yuan Peng ; Chen-Chung Houng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-166f0b3e62539f519abf17f05ccd010a3c0d9ce5b01d89096cf824bf9930f7c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Angular velocity control</topic><topic>Applied sciences</topic><topic>Backpropagation algorithms</topic><topic>Computer science; control theory; systems</topic><topic>Control systems</topic><topic>Control theory. Systems</topic><topic>DC motors</topic><topic>Exact sciences and technology</topic><topic>Friction</topic><topic>History</topic><topic>Neural networks</topic><topic>Pulse width modulation</topic><topic>Robotics</topic><topic>Shafts</topic><topic>Space vector pulse width modulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tzes, A.</creatorcontrib><creatorcontrib>Pei-Yuan Peng</creatorcontrib><creatorcontrib>Chen-Chung Houng</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tzes, A.</au><au>Pei-Yuan Peng</au><au>Chen-Chung Houng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural network control for DC motor micromaneuvering</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>1995-10-01</date><risdate>1995</risdate><volume>42</volume><issue>5</issue><spage>516</spage><epage>523</epage><pages>516-523</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>The application of a neural network controller for compensating the effects induced by the friction in a DC motor micromaneuvering system is considered in this article. A backpropagation neural network operating in the specialized learning mode, using the sign gradient descent algorithm, is employed. The input vector to the neural network controller consists of the time history of the motor angular shaft velocity within a prespecified time window. The on-line training of the neural network is performed in the region of interest of the output domain. The neural network output resembles that of a pulse width modulated controller. The effect of the number of neurons in the input and hidden layers on the transient system response is explored. Experimental studies are presented to indicate the effectiveness of the proposed algorithm.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/41.464615</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 1995-10, Vol.42 (5), p.516-523
issn 0278-0046
1557-9948
language eng
recordid cdi_crossref_primary_10_1109_41_464615
source IEEE Electronic Library (IEL)
subjects Angular velocity control
Applied sciences
Backpropagation algorithms
Computer science
control theory
systems
Control systems
Control theory. Systems
DC motors
Exact sciences and technology
Friction
History
Neural networks
Pulse width modulation
Robotics
Shafts
Space vector pulse width modulation
title Neural network control for DC motor micromaneuvering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A28%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20network%20control%20for%20DC%20motor%20micromaneuvering&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Tzes,%20A.&rft.date=1995-10-01&rft.volume=42&rft.issue=5&rft.spage=516&rft.epage=523&rft.pages=516-523&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/41.464615&rft_dat=%3Cproquest_RIE%3E28489566%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28489566&rft_id=info:pmid/&rft_ieee_id=464615&rfr_iscdi=true