Neural network control for DC motor micromaneuvering

The application of a neural network controller for compensating the effects induced by the friction in a DC motor micromaneuvering system is considered in this article. A backpropagation neural network operating in the specialized learning mode, using the sign gradient descent algorithm, is employed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 1995-10, Vol.42 (5), p.516-523
Hauptverfasser: Tzes, A., Pei-Yuan Peng, Chen-Chung Houng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The application of a neural network controller for compensating the effects induced by the friction in a DC motor micromaneuvering system is considered in this article. A backpropagation neural network operating in the specialized learning mode, using the sign gradient descent algorithm, is employed. The input vector to the neural network controller consists of the time history of the motor angular shaft velocity within a prespecified time window. The on-line training of the neural network is performed in the region of interest of the output domain. The neural network output resembles that of a pulse width modulated controller. The effect of the number of neurons in the input and hidden layers on the transient system response is explored. Experimental studies are presented to indicate the effectiveness of the proposed algorithm.< >
ISSN:0278-0046
1557-9948
DOI:10.1109/41.464615