A Nagao-Matsuyama approach to high-resolution satellite image classification

A knowledge-based, hierarchical, unsupervised classification scheme for high-resolution multispectral satellite (HRMS) images is described. This scheme, which finds its conceptual bases in the work of Nagao and Matsuyama for structural analysis of aerial photographs, introduces a new filtering algor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 1994-07, Vol.32 (4), p.749-758
Hauptverfasser: Baraldi, A., Parmiggiani, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A knowledge-based, hierarchical, unsupervised classification scheme for high-resolution multispectral satellite (HRMS) images is described. This scheme, which finds its conceptual bases in the work of Nagao and Matsuyama for structural analysis of aerial photographs, introduces a new filtering algorithm which is able to preserve fine linear structures of the image. An example of the application of this classification scheme to a Landsat Thematic Mapper multispectral image is presented.< >
ISSN:0196-2892
1558-0644
DOI:10.1109/36.298004