A Nagao-Matsuyama approach to high-resolution satellite image classification
A knowledge-based, hierarchical, unsupervised classification scheme for high-resolution multispectral satellite (HRMS) images is described. This scheme, which finds its conceptual bases in the work of Nagao and Matsuyama for structural analysis of aerial photographs, introduces a new filtering algor...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 1994-07, Vol.32 (4), p.749-758 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A knowledge-based, hierarchical, unsupervised classification scheme for high-resolution multispectral satellite (HRMS) images is described. This scheme, which finds its conceptual bases in the work of Nagao and Matsuyama for structural analysis of aerial photographs, introduces a new filtering algorithm which is able to preserve fine linear structures of the image. An example of the application of this classification scheme to a Landsat Thematic Mapper multispectral image is presented.< > |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/36.298004 |