Probabilistic multiscale image segmentation

A method is presented to segment multidimensional images using a multiscale (hyperstack) approach with probabilistic linking. A hyperstack is a voxel-based multiscale data structure whose levels are constructed by convolving the original image with a Gaussian kernel of increasing width. Between voxe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1997-02, Vol.19 (2), p.109-120
Hauptverfasser: Vincken, K.L., Koster, A.S.E., Viergever, M.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method is presented to segment multidimensional images using a multiscale (hyperstack) approach with probabilistic linking. A hyperstack is a voxel-based multiscale data structure whose levels are constructed by convolving the original image with a Gaussian kernel of increasing width. Between voxels at adjacent scale levels, child-parent linkages are established according to a model-directed linkage scheme. In the resulting tree-like data structure, roots are formed to indicate the most plausible locations in scale space where segments in the original image are represented by a single voxel. The final segmentation is obtained by tracing back the linkages for all roots. The present paper deals with probabilistic (or multiparent) linking. The multiparent linkage structure is translated into a list of probabilities that are indicative of which voxels are partial volume voxels and to which extent. Probability maps are generated to visualize the progress of weak linkages in scale space when going from fine to coarser scale. It is demonstrated that probabilistic linking gives a significantly improved segmentation as compared with conventional (single-parent) linking.
ISSN:0162-8828
1939-3539
DOI:10.1109/34.574787