A Bayesian segmentation methodology for parametric image models

Region-based image segmentation methods require some criterion for determining when to merge regions. This paper presents a novel approach by introducing a Bayesian probability of homogeneity in a general statistical context. The authors' approach does not require parameter estimation and is th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1995-02, Vol.17 (2), p.211-217
Hauptverfasser: LaValle, S.M., Hutchinson, S.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Region-based image segmentation methods require some criterion for determining when to merge regions. This paper presents a novel approach by introducing a Bayesian probability of homogeneity in a general statistical context. The authors' approach does not require parameter estimation and is therefore particularly beneficial for cases in which estimation-based methods are most prone to error: when little information is contained in some of the regions and, therefore, parameter estimates are unreliable. The authors apply this formulation to three distinct parametric model families that have been used in past segmentation schemes: implicit polynomial surfaces, parametric polynomial surfaces, and Gaussian Markov random fields. The authors present results on a variety of real range and intensity images.< >
ISSN:0162-8828
1939-3539
DOI:10.1109/34.368166