Alias-free voxelization of geometric objects

Introduces a new concept for alias-free voxelization of geometric objects based on a voxelization model (V-model). The V-model of an object is its representation in 3D continuous space by a trivariate density function. This function is sampled during the voxelization and the resulting values are sto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 1999-07, Vol.5 (3), p.251-267
Hauptverfasser: Sramek, M., Kaufman, A.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduces a new concept for alias-free voxelization of geometric objects based on a voxelization model (V-model). The V-model of an object is its representation in 3D continuous space by a trivariate density function. This function is sampled during the voxelization and the resulting values are stored in a volume buffer. This concept enables us to study general issues of sampling and rendering separately from object-specific design issues. It provides us with a possibility to design such V-models, which are correct from the point of view of both the sampling and rendering, thus leading to both alias-free volumetric representation and alias-free rendered images. We performed numerous experiments with different combinations of V-models and reconstruction techniques. We have shown that the V-model with a Gaussian surface density profile combined with tricubic interpolation and Gabor derivative reconstruction outperforms the previously published technique with a linear density profile. This enables higher fidelity of images rendered from volume data due to increased sharpness of edges and thinner surface patches.
ISSN:1077-2626
1941-0506
DOI:10.1109/2945.795216