Robust channel estimation for OFDM systems with rapid dispersive fading channels
Orthogonal frequency-division multiplexing (OFDM) modulation is a promising technique for achieving the high bit rates required for a wireless multimedia service. Without channel estimation and tracking, OFDM systems have to use differential phase-shift keying (DPSK), which has a 3-dB signal-to-nois...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on communications 1998-07, Vol.46 (7), p.902-915 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Orthogonal frequency-division multiplexing (OFDM) modulation is a promising technique for achieving the high bit rates required for a wireless multimedia service. Without channel estimation and tracking, OFDM systems have to use differential phase-shift keying (DPSK), which has a 3-dB signal-to-noise ratio (SNR) loss compared with coherent phase-shift keying (PSK). To improve the performance of OFDM systems by using coherent PSK, we investigate robust channel estimation for OFDM systems. We derive a minimum mean-square-error (MMSE) channel estimator, which makes full use of the time- and frequency-domain correlations of the frequency response of time-varying dispersive fading channels. Since the channel statistics are usually unknown, we also analyze the mismatch of the estimator-to-channel statistics and propose a robust channel estimator that is insensitive to the channel statistics. The robust channel estimator can significantly improve the performance of OFDM systems in a rapid dispersive fading channel. |
---|---|
ISSN: | 0090-6778 1558-0857 |
DOI: | 10.1109/26.701317 |