Analysis of shielded lossy multilayered-substrate microstrip discontinuities
The spatial Green's function for a rectangular cavity partially filled with multiple layers of lossy dielectrics has been derived. The Green's function is used to compute the fields around a discontinuity in a transmission line. To analyze a discontinuity, the unknown surface current maint...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2001-04, Vol.49 (4), p.701-711 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The spatial Green's function for a rectangular cavity partially filled with multiple layers of lossy dielectrics has been derived. The Green's function is used to compute the fields around a discontinuity in a transmission line. To analyze a discontinuity, the unknown surface current maintained on the microstrip discontinuity is expanded in terms of known suitable basis functions. The electric-field components in the plane of the discontinuity region are then written in terms of this current. Imposing the boundary condition that the component of the electric-field tangential to the metallization is zero yields the electric-field integral equation (EFIE). The method of moments is applied to the EFIE to obtain a system of linear equations. The resultant semianalytical expressions were used to conduct accurate modeling of a variety of structures. The validity and accuracy of this method are established through comparison with other published results. Convergence considerations are outlined and verified. |
---|---|
ISSN: | 0018-9480 1557-9670 |
DOI: | 10.1109/22.915445 |