A better scalar Preisach algorithm

A Preisach hysteresis model for the case in which Everett's function, E(H/sub 1/, H/sub 2/), has been defined from measurements of the magnetization change from a turning point H/sub 1/ to the field H/sub 2/. E(H/sub 1/, H/sub 2/) is the integral of the Preisach density function, whose symmetry...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 1988-11, Vol.24 (6), p.2491-2493
Hauptverfasser: Wiesen, K., Charap, S.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Preisach hysteresis model for the case in which Everett's function, E(H/sub 1/, H/sub 2/), has been defined from measurements of the magnetization change from a turning point H/sub 1/ to the field H/sub 2/. E(H/sub 1/, H/sub 2/) is the integral of the Preisach density function, whose symmetry imposes the relation E(H/sub 1/, H/sub 2/)=E(-H/sub 1/, -H/sub 2/). This is inconsistent with measured first-order curves. The source of the inconsistency is that magnetization changes depend on the state of the medium, not just the most recent turning point as Preisach assumes. A Preisach-like algorithm is proposed that is consistently defined by first-order curves and that predicts magnetization changes based on the state of the medium. The algorithm maintains a turning-point history and predicts closed minor loops, like the traditional model, but also predicts noncongruent minor loops and nonzero initial susceptibility.< >
ISSN:0018-9464
1941-0069
DOI:10.1109/20.92151