Hypothesis testing with the general source

The asymptotically optimal hypothesis testing problem, with general sources as the null and alternative hypotheses, is studied under exponential-type error constraints on the first kind of error probability. Our fundamental philosophy is to convert all of the hypothesis testing problems to the perti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2000-11, Vol.46 (7), p.2415-2427
1. Verfasser: Sun Han, Te
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The asymptotically optimal hypothesis testing problem, with general sources as the null and alternative hypotheses, is studied under exponential-type error constraints on the first kind of error probability. Our fundamental philosophy is to convert all of the hypothesis testing problems to the pertinent computation problems in the large deviation-probability theory. This methodologically new approach enables us to establish compact general formulas of the optimal exponents of the second kind of error and correct testing probabilities for the general sources including all nonstationary and/or nonergodic sources with arbitrary abstract alphabet (countable or uncountable). These general formulas are presented from the information-spectrum point of view.
ISSN:0018-9448
1557-9654
DOI:10.1109/18.887854