Nonparametric entropy estimation for stationary processes and random fields, with applications to English text

We discuss a family of estimators for the entropy rate of a stationary ergodic process and prove their pointwise and mean consistency under a Doeblin-type mixing condition. The estimators are Cesaro averages of longest match-lengths, and their consistency follows from a generalized ergodic theorem d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1998-05, Vol.44 (3), p.1319-1327
Hauptverfasser: Kontoyiannis, I., Algoet, P.H., Suhov, Yu.M., Wyner, A.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We discuss a family of estimators for the entropy rate of a stationary ergodic process and prove their pointwise and mean consistency under a Doeblin-type mixing condition. The estimators are Cesaro averages of longest match-lengths, and their consistency follows from a generalized ergodic theorem due to Maker (1940). We provide examples of their performance on English text, and we generalize our results to countable alphabet processes and to random fields.
ISSN:0018-9448
1557-9654
DOI:10.1109/18.669425