The normalized second moment of the binary lattice determined by a convolutional code

Calculates the per-dimension mean squared error /spl mu/(S) of the two-state convolutional code C with generator matrix /spl lsqb/1,1+D/spl rsqb/, for the symmetric binary source S=(0,1), and for the uniform source S=/spl lcub/0,1/spl rcub/. When S=(0,1), the quantity /spl mu/(S) is the second momen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1994-01, Vol.40 (1), p.166-174
Hauptverfasser: Calderbank, A.R., Fishburn, P.C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue 1
container_start_page 166
container_title IEEE transactions on information theory
container_volume 40
creator Calderbank, A.R.
Fishburn, P.C.
description Calculates the per-dimension mean squared error /spl mu/(S) of the two-state convolutional code C with generator matrix /spl lsqb/1,1+D/spl rsqb/, for the symmetric binary source S=(0,1), and for the uniform source S=/spl lcub/0,1/spl rcub/. When S=(0,1), the quantity /spl mu/(S) is the second moment of the coset weight distribution, which gives the expected Hamming distance of a random binary sequence from the code. When S=/spl lcub/0,1/spl rcub/, the quantity /spl mu/(S) is the second moment of the Voronoi region of the module 2 binary lattice determined by C. The key observation is that a convolutional code with 2/sup /spl upsi// states gives 2/sup /spl upsi// approximations to a given source sequence, and these approximations do not differ very much. It is possible to calculate the steady state distribution for the differences in these path metrics, and hence, the second moment. The authors only give details for the convolutional code /spl lsqb/1,1+D/spl rsqb/, but the method applies to arbitrary codes. They also define the covering radius of a convolutional code, and calculate this quantity for the code /spl lsqb/1,1+D/spl rsqb/.< >
doi_str_mv 10.1109/18.272475
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_18_272475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>272475</ieee_id><sourcerecordid>28675387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-335686fa943a2dd76f730a28076113c751ab19d8c298053a62a9f30b5cdc53193</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKsLt66yEMHF1Dwmr6WILyi4addDJslgZCapSSrUX2-kpavL4XzncO8F4BqjBcZIPWC5IIK0gp2AGWZMNIqz9hTMEMKyUW0rz8FFzl9VtgyTGVivPh0MMU169L_OwuxMDBZOcXKhwDjAUv3eB512cNSleOOgdcWlyYeK9zuoYU38xHFbfAx6rMq6S3A26DG7q8Ocg_XL8-rprVl-vL4_PS4bQxEvDaWMSz5o1VJNrBV8EBRpIpHgGFMjGNY9VlYaoiRiVHOi1UBRz4w1jGJF5-Bu37tJ8Xvrcukmn40bRx1c3OaOSC4YlaKC93vQpJhzckO3SX6qR3UYdf-P67Ds9o-r7O2hVGejxyHpYHw-BlpUtyakYjd7zDvnju6h4w8cKnRa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28675387</pqid></control><display><type>article</type><title>The normalized second moment of the binary lattice determined by a convolutional code</title><source>IEEE Electronic Library (IEL)</source><creator>Calderbank, A.R. ; Fishburn, P.C.</creator><creatorcontrib>Calderbank, A.R. ; Fishburn, P.C.</creatorcontrib><description>Calculates the per-dimension mean squared error /spl mu/(S) of the two-state convolutional code C with generator matrix /spl lsqb/1,1+D/spl rsqb/, for the symmetric binary source S=(0,1), and for the uniform source S=/spl lcub/0,1/spl rcub/. When S=(0,1), the quantity /spl mu/(S) is the second moment of the coset weight distribution, which gives the expected Hamming distance of a random binary sequence from the code. When S=/spl lcub/0,1/spl rcub/, the quantity /spl mu/(S) is the second moment of the Voronoi region of the module 2 binary lattice determined by C. The key observation is that a convolutional code with 2/sup /spl upsi// states gives 2/sup /spl upsi// approximations to a given source sequence, and these approximations do not differ very much. It is possible to calculate the steady state distribution for the differences in these path metrics, and hence, the second moment. The authors only give details for the convolutional code /spl lsqb/1,1+D/spl rsqb/, but the method applies to arbitrary codes. They also define the covering radius of a convolutional code, and calculate this quantity for the code /spl lsqb/1,1+D/spl rsqb/.&lt; &gt;</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.272475</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Binary sequences ; Coding, codes ; Convolutional codes ; Decoding ; Event detection ; Exact sciences and technology ; Hafnium ; Hamming distance ; Information theory ; Information, signal and communications theory ; Lattices ; Quantization ; Signal and communications theory ; Symmetric matrices ; Telecommunications and information theory</subject><ispartof>IEEE transactions on information theory, 1994-01, Vol.40 (1), p.166-174</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-335686fa943a2dd76f730a28076113c751ab19d8c298053a62a9f30b5cdc53193</citedby><cites>FETCH-LOGICAL-c306t-335686fa943a2dd76f730a28076113c751ab19d8c298053a62a9f30b5cdc53193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/272475$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/272475$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4035622$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Calderbank, A.R.</creatorcontrib><creatorcontrib>Fishburn, P.C.</creatorcontrib><title>The normalized second moment of the binary lattice determined by a convolutional code</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Calculates the per-dimension mean squared error /spl mu/(S) of the two-state convolutional code C with generator matrix /spl lsqb/1,1+D/spl rsqb/, for the symmetric binary source S=(0,1), and for the uniform source S=/spl lcub/0,1/spl rcub/. When S=(0,1), the quantity /spl mu/(S) is the second moment of the coset weight distribution, which gives the expected Hamming distance of a random binary sequence from the code. When S=/spl lcub/0,1/spl rcub/, the quantity /spl mu/(S) is the second moment of the Voronoi region of the module 2 binary lattice determined by C. The key observation is that a convolutional code with 2/sup /spl upsi// states gives 2/sup /spl upsi// approximations to a given source sequence, and these approximations do not differ very much. It is possible to calculate the steady state distribution for the differences in these path metrics, and hence, the second moment. The authors only give details for the convolutional code /spl lsqb/1,1+D/spl rsqb/, but the method applies to arbitrary codes. They also define the covering radius of a convolutional code, and calculate this quantity for the code /spl lsqb/1,1+D/spl rsqb/.&lt; &gt;</description><subject>Applied sciences</subject><subject>Binary sequences</subject><subject>Coding, codes</subject><subject>Convolutional codes</subject><subject>Decoding</subject><subject>Event detection</subject><subject>Exact sciences and technology</subject><subject>Hafnium</subject><subject>Hamming distance</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Lattices</subject><subject>Quantization</subject><subject>Signal and communications theory</subject><subject>Symmetric matrices</subject><subject>Telecommunications and information theory</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKsLt66yEMHF1Dwmr6WILyi4addDJslgZCapSSrUX2-kpavL4XzncO8F4BqjBcZIPWC5IIK0gp2AGWZMNIqz9hTMEMKyUW0rz8FFzl9VtgyTGVivPh0MMU169L_OwuxMDBZOcXKhwDjAUv3eB512cNSleOOgdcWlyYeK9zuoYU38xHFbfAx6rMq6S3A26DG7q8Ocg_XL8-rprVl-vL4_PS4bQxEvDaWMSz5o1VJNrBV8EBRpIpHgGFMjGNY9VlYaoiRiVHOi1UBRz4w1jGJF5-Bu37tJ8Xvrcukmn40bRx1c3OaOSC4YlaKC93vQpJhzckO3SX6qR3UYdf-P67Ds9o-r7O2hVGejxyHpYHw-BlpUtyakYjd7zDvnju6h4w8cKnRa</recordid><startdate>199401</startdate><enddate>199401</enddate><creator>Calderbank, A.R.</creator><creator>Fishburn, P.C.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>199401</creationdate><title>The normalized second moment of the binary lattice determined by a convolutional code</title><author>Calderbank, A.R. ; Fishburn, P.C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-335686fa943a2dd76f730a28076113c751ab19d8c298053a62a9f30b5cdc53193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Applied sciences</topic><topic>Binary sequences</topic><topic>Coding, codes</topic><topic>Convolutional codes</topic><topic>Decoding</topic><topic>Event detection</topic><topic>Exact sciences and technology</topic><topic>Hafnium</topic><topic>Hamming distance</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Lattices</topic><topic>Quantization</topic><topic>Signal and communications theory</topic><topic>Symmetric matrices</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calderbank, A.R.</creatorcontrib><creatorcontrib>Fishburn, P.C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Calderbank, A.R.</au><au>Fishburn, P.C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The normalized second moment of the binary lattice determined by a convolutional code</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1994-01</date><risdate>1994</risdate><volume>40</volume><issue>1</issue><spage>166</spage><epage>174</epage><pages>166-174</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Calculates the per-dimension mean squared error /spl mu/(S) of the two-state convolutional code C with generator matrix /spl lsqb/1,1+D/spl rsqb/, for the symmetric binary source S=(0,1), and for the uniform source S=/spl lcub/0,1/spl rcub/. When S=(0,1), the quantity /spl mu/(S) is the second moment of the coset weight distribution, which gives the expected Hamming distance of a random binary sequence from the code. When S=/spl lcub/0,1/spl rcub/, the quantity /spl mu/(S) is the second moment of the Voronoi region of the module 2 binary lattice determined by C. The key observation is that a convolutional code with 2/sup /spl upsi// states gives 2/sup /spl upsi// approximations to a given source sequence, and these approximations do not differ very much. It is possible to calculate the steady state distribution for the differences in these path metrics, and hence, the second moment. The authors only give details for the convolutional code /spl lsqb/1,1+D/spl rsqb/, but the method applies to arbitrary codes. They also define the covering radius of a convolutional code, and calculate this quantity for the code /spl lsqb/1,1+D/spl rsqb/.&lt; &gt;</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/18.272475</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1994-01, Vol.40 (1), p.166-174
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_18_272475
source IEEE Electronic Library (IEL)
subjects Applied sciences
Binary sequences
Coding, codes
Convolutional codes
Decoding
Event detection
Exact sciences and technology
Hafnium
Hamming distance
Information theory
Information, signal and communications theory
Lattices
Quantization
Signal and communications theory
Symmetric matrices
Telecommunications and information theory
title The normalized second moment of the binary lattice determined by a convolutional code
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A15%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20normalized%20second%20moment%20of%20the%20binary%20lattice%20determined%20by%20a%20convolutional%20code&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Calderbank,%20A.R.&rft.date=1994-01&rft.volume=40&rft.issue=1&rft.spage=166&rft.epage=174&rft.pages=166-174&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.272475&rft_dat=%3Cproquest_RIE%3E28675387%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28675387&rft_id=info:pmid/&rft_ieee_id=272475&rfr_iscdi=true